Math, asked by knightdyle, 5 days ago

Find the x-intercepts and y-intercepts of a line passing through point (2,a) and (6,12)

Answers

Answered by suhail2070
0

Answer:

X INTERCEPT IS (a-36)/(a-12).

Y INTERCEPT IS (a-36)/3.

Step-by-step explanation:

(2 \:  \:  \: a) \:  \:  \:  \:  \: (6 \:  \:  \:  \:  \: 12) \\  \\ equation \: of \:l ine \: is \:  \:  \: (y - 12) =  (\frac{a - 12}{2 - 6} )(x - 6) \\  \\  - 3(y - 12) = (a - 12)(x - 6) \\  \\ (a - 12)(x - 6) + 3(y - 12) = 0 \\  \\ (a - 12)x + 3y - 6(a - 12) - 36 = 0 \\  \\ (a - 12)x + 3y =   a - 72 + 36 = 0 \\  \\ (a - 12)x + 3y = (a - 36) \\  \\ put \:  \: x = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 3y = (a - 36) \\  \\ y =  \frac{(a - 36)}{3} . \\  \\ therefore \:  \:  \: y \: intercept \: is \:  \:  \: \frac{(a - 36)}{3}. \\  \\  \\  \\ put \:  \:  \: y = 0 \\  \\  \\  \:  \: (a - 12)x = (a - 36) \\  \\ x = \frac{ (a - 36)}{(a - 12)} . \\  \\ x \: intercept \: is \: \frac{ (a - 36)}{(a - 12)}.

Similar questions