Physics, asked by thameet, 9 months ago

Find the x values at which following functions attain maxima and minima 1) f(x)=2x^3–3x^2–12x+5. 2) f(x)=x^3–3x.

Answers

Answered by Rohit18Bhadauria
12

1)

Given:

A function

f(x)= 2x³-3x²-12x+5

To Find:

Values of x at which function attains the maxima and minima

Solution:

We know that,

  • For the given function f(x)

✏ Solutions of f'(x)=0 are points of maxima and minima of f(x)

✏ If f''(x₁) is positive or equal to zero, then x₁ is the minima  

✏ If f''(x₁) is negative, then x₁ is the maxima

━━━━━━━━━━━━━━━━━━━━━━━━━

On differentiating f(x) w.r.t x, we get

\longrightarrow\rm{f'(x)=2(3x^{2})-3(2x)-12(1)+0}

\longrightarrow\rm{f'(x)=6x^{2}-6x-12}

Now, Let f'(x)=0

\longrightarrow\rm{f'(x)=0}

\longrightarrow\rm{6x^{2}-6x-12=0}

\longrightarrow\rm{6(x^{2}-x-2)=0}

\longrightarrow\rm{x^{2}-x-2=0}

\longrightarrow\rm{x^{2}-2x+x-2=0}

\longrightarrow\rm{x(x-2)+1(x-2)=0}

\longrightarrow\rm{(x+1)(x-2)=0}

So, the solutions of above equation are

\longrightarrow\rm{x=-1,2}

Therefore, -1 and 2 are the points to be checked for maxima and minima

━━━━━━━━━━━━━━━━━━━━━━━━━

On differentiating f'(x) w.r.t. x, we get

\longrightarrow\rm{f''(x)=6(2x)-6(1)-0}

\longrightarrow\rm{f''(x)=12x-6}

On putting x=-1 in in f''(x), we get

\longrightarrow\rm{f''(-1)=12(-1)-6}

\longrightarrow\rm{f''(-1)=-12-6}

\longrightarrow\rm{f''(-1)=-18}

\longrightarrow\rm{f''(-1)<0}

So, x= -1 is the point of maxima

Now,

On putting x=2 in in f''(x), we get

\longrightarrow\rm{f''(2)=12(2)-6}

\longrightarrow\rm{f''(2)=24-6}

\longrightarrow\rm{f''(2)=18}

\longrightarrow\rm{f''(2)>0}

So, x= 2 is the point of minima

━━━━━━━━━━━━━━━━━━━━━━━━━

2)

Given:

A function

f(x)= x³-3x

To Find:

Values of x at which function attains the maxima and minima

Solution:

We know that,

  • For the given function f(x)

✏ Solutions of f'(x)=0 are points of maxima and minima of f(x)

✏ If f''(x₁) is positive or equal to zero, then x₁ is the minima  

✏ If f''(x₁) is negative, then x₁ is the maxima

━━━━━━━━━━━━━━━━━━━━━━━━━

On differentiating f(x) w.r.t x, we get

\longrightarrow\rm{f'(x)=3x^{2}-3(1)}

\longrightarrow\rm{f'(x)=3x^{2}-3}

Now, Let f'(x)=0

\longrightarrow\rm{f'(x)=0}

\longrightarrow\rm{3x^{2}-3=0}

\longrightarrow\rm{3(x^{2}-1)=0}

\longrightarrow\rm{x^{2}-1=0}

\longrightarrow\rm{(x+1)(x-1)=0}

So, the solutions of above equation are

\longrightarrow\rm{x=-1,1}

Therefore, -1 and 1 are the points to be checked for maxima and minima

━━━━━━━━━━━━━━━━━━━━━━━━━

On differentiating f'(x) w.r.t. x, we get

\longrightarrow\rm{f''(x)=3(2x)-0}

\longrightarrow\rm{f''(x)=6x}

On putting x=-1 in in f''(x), we get

\longrightarrow\rm{f''(-1)=6(-1)}

\longrightarrow\rm{f''(-1)=-6}

\longrightarrow\rm{f''(-1)<0}

So, x= -1 is the point of maxima

On putting x=1 in in f''(x), we get

\longrightarrow\rm{f''(1)=6(1)}

\longrightarrow\rm{f''(1)=6}

\longrightarrow\rm{f''(1)>0}

So, x= 1 is the point of minima

Answered by Anonymous
182

Answer

To find maxima and minima :-

Step - 1

Find   \frac{dy}{dx} =  {f}^{'} and put it equal to zero.

 \frac{dy}{dx} = 0 , by solving it we will get some values of x ( let x_1 and x_2 )

━━━━━━━━━━━━━━━━━━━━━━━━━

Step - 2

Find  \frac{ {d}^{2} y}{ {dx}^{2} }  =  {f}^{"} and put the values of x found in previous step.

━━━━━━━━━━━━━━━━━━━━━━━━━

Check

If \frac{ {d}^{2} y}{ {dx}^{2} } > 0 for any x =  x_2 , then  x_2Is maxima.

If \frac{ {d}^{2} y}{ {dx}^{2} } < 0 for any x = x_1 , then  x_1 Is minima.

━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━

1.

Equation - 2 {x}^{3}   - 3 {x}^{2}  - 12x + 5

━━━━━━━━━━━━━━━━━━━━━━━━━

Differentiation of equation =  2 {x}^{3}   - 3 {x}^{2}  - 12x + 5

 = 6 {x}^{2}  - 6x - 12

━━━━━━━━━━━━━━━━━━━━━━━━━

Putting the equation = 0

6 {x}^{2}  - 6x - 12 = 0

\longrightarrow =  {x}^{2}  - x - 2 = 0

\longrightarrow =  {x}^{2}  - 2x + x - 2 = 0

\longrightarrow = (x + 1)(x - 2) = 0

Roots of the equation are -1 , 2

━━━━━━━━━━━━━━━━━━━━━━━━━

 {f}^{"} = Differentiation of  6 {x}^{2}  - 6x - 12

{f}^{"} = 12x - 6

Substituting the roots of the equation in   {f}^{"}

12x - 6 = -12-6 = -18

12x - 6 = 12 × 2 - 6 = 24 - 6 = 18

━━━━━━━━━━━━━━━━━━━━━━━━━

\longrightarrowAt x = -1 , the value of function is negative so , x = -1 is the maxima.

\longrightarrowAt x = 2 , the value of function is positive so , x = 2 is the minima.

━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━

2. Equation -  {x}^{3}   - 3 x

━━━━━━━━━━━━━━━━━━━━━━━━━

Differentiation of equation =   {x}^{3}   - 3 {x}

\longrightarrow = 3 {x}^{2} - 3

━━━━━━━━━━━━━━━━━━━━━━━━━

Putting the equation = 0

\longrightarrow 3 {x}^{2}  - 3 = 0

\longrightarrow =  {x}^{2}  - 1 = 0

\longrightarrow = (x + 1)(x - 1) = 0

Roots of the equation are -1 , +1

━━━━━━━━━━━━━━━━━━━━━━━━━

 {f}^{"} = Differentiation of   {x}^{2}  - 3

{f}^{"} = 6x

━━━━━━━━━━━━━━━━━━━━━━━━━

Substituting the roots of the equation in   {f}^{"}

\longrightarrow2x = -6 at x = -1

\longrightarrow2x = 6 at x = 1

━━━━━━━━━━━━━━━━━━━━━━━━━

\longrightarrowAt x = -1 , the value of function is negative so , x = -1 is the maxima.

\longrightarrowand At x = 1 , the value of function is positive so , x = 1 is the minima.

━━━━━━━━━━━━━━━━━━━━━━━━━

Thanks

Similar questions