Math, asked by rroyyalanavyasri, 8 months ago

Find the zences of the polynomial root 3x² + 11x + 6root 3​

Answers

Answered by Anonymous
27

 \huge \boxed{ \fcolorbox{cyan}{red}{ \:Answer}}

 \tt { \boxed{ \underline{ \pink{ \tt{ \:  - 3 \sqrt{3} and \:  \dfrac{ - 2 \sqrt{3} }{3} \:}}}}}

________________________________________________

 \sf \huge \underline \blue{Question}

Find the roots of the polynomial

 \rm{ \sqrt{3} {x}^{2} + 11x + 6 \sqrt{3}}

_______________________________________________

 \sf \underline \pink{step \:  by \:   \: step \:  explanation}

 \rm \purple{ \implies \:  \sqrt{3} {x}^{2} + 11x + 6 \sqrt{ 3 }}

 \rm \orange{ \implies \:  \sqrt{3} {x}^{2} + 11x + 6 \sqrt{3} = 0}

 \rm \green{ \implies \:  \sqrt{3}  {x}^{2} + 9x + 2x + \sqrt{3} = 0}

 \rm \blue{ \implies \:  \sqrt{3}x(x + 3 \sqrt{3}) + 2(x + 3 \sqrt{3}) = 0}

 \rm \pink{ \implies \: (x + 3 \sqrt{3})( \sqrt{3}x + 2) = 0}

 \rm \red{ \implies \: x + 3 \sqrt{ 3} = 0 \: \:  or \:  \:  \sqrt{3x} + 2 = 0}

 \rm \green{ \implies \: x =  - 3 \sqrt{3}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm{ \:  \:  \:  \:  \:  \:  \:  \:  \: or}

 \rm \purple{ \implies \: x =  \dfrac{ \sqrt{ \sqrt{2} } }{ \sqrt{3} } =  \dfrac{ - 2 \times  \sqrt{3} }{ \sqrt{3} \times  \sqrt{3} } =  \dfrac{ - 2 \sqrt{3} }{3}}

so,

roots of equation are,

 \tt \red{ \:  - 3 \sqrt{3} and \:  \dfrac{ - 2 \sqrt{3} }{3}}

Similar questions