find the zero of polynomial and verify
a) 3x²-17x+24
b) 6x²-17x+7
c) x²-12x+32
Answers
Answered by
0
Answer:-
a) 3x² - 17x + 24 = 0
3x² - 9x - 8x + 24 = 0
3x (x - 3) -8(x - 3) = 0
(3x - 8) (x - 3) = 0
3x - 8 = 0
3x = 8
x = 8/3.
x - 3 = 0
x = 3.
b) 6x² - 17x + 7 = 0
6x² - 3x - 14x + 7 = 0
3x (2x - 1) -7(2x - 1) = 0
(3x - 7)(2x - 1) = 0
3x - 7 = 0
3x = 7
x = 7/3.
2x - 1 = 0
2x = 1
x = 1/2.
c) x² - 12x + 32 = 0
x² - 4x - 8x + 32 = 0
x(x - 4) - 8(x - 4) = 0
(x - 8)(x - 4) = 0
x - 8 = 0
x = 8
x - 4 = 0
x = 4.
Verification:
a) Sum of zeroes = -b /a
8/3+3 = -(-17/3)
(8+9)/3 = 17/3
17/3 = 17/3.
Product of zeroes = c/a
(8/3)(3) = 24/3
24/3 = 24/3
b) Sum = -b/a
(7/3)+(1/2) = 17/6
2(7)+3(1)/6 = 17/6
17/6 = 17/6.
Product = c/a
(7/3)(1/2) = 7/6
7/6 = 7/6
c) Sum = -(-12)/1
4+8 = 12
12 = 12.
Product = 32/1
(8)(4) = 32
32 = 32.
Similar questions