Math, asked by IshwarjotKaur, 1 month ago

find the zero of quadric polynomial X square +7x +10 and verify the relationship between the zeros and coffiecients?Plz reply fast I'm in hurry ​

Answers

Answered by Anonymous
2

\bf{\large{\underline{\underline{\bf{Given\::}}}}}

The quadratic polynomial x² + 7x + 10

\bf{\large{\underline{\underline{\bf{To\:find\::}}}}}

The zeroes and verify the relationship between the zeroes and the coefficient.

\bf{\large{\underline{\underline{\bf{Explanation\::}}}}}

We have p(x) = x² + 7x + 10

Zero of the polynomial is p(x) = 0

So;

\begin{gathered}\longrightarrow\sf{x^{2} +7x+10=0}\\\\\longrightarrow\sf{x^{2} +2x+5x+10=0}\\\\\longrightarrow\sf{x(x+2)+5(x+2)=0}\\\\\longrightarrow\sf{(x+2)(x+5)=0}\\\\\longrightarrow\sf{x+2=0\:\:\:Or\:\:\:x+5=0}\\\\\longrightarrow\sf{\red{x=-2\:\:\:Or\:\:\:x=-5}}\end{gathered}

∴ The α = -2 and β = -5 are the zeroes of the polynomial.

As the given quadratic polynomial as we compared with ax²+bx+c=0

a = 1

b = 7

c = 10

So;

\bf{\green{\underline{\underline{\tt{Sum\:of\:the\:zeroes\::}}}}}

\begin{gathered}\mapsto\sf{\alpha +\beta=\dfrac{-b}{a} =\dfrac{Coefficient\:of\:x^{2} }{Coefficient\:of\:x}} \\\\\\\mapsto\sf{-2+(-5)=\dfrac{-7}{1} }\\\\\\\mapsto\sf{-2-5=-7}\\\\\\\mapsto\sf{\red{-7=-7}}\end{gathered}

\bf{\green{\underline{\underline{\tt{Product\:of\:the\:zeroes\::}}}}}

\begin{gathered}\mapsto\sf{\alpha \times \beta=\dfrac{c}{a} =\dfrac{Constant\:term }{Coefficient\:of\:x}} \\\\\\\mapsto\sf{-2\times (-5)=\dfrac{10}{1} }\\\\\\\mapsto\sf{-(-10)=10}\\\\\\\mapsto\sf{\red{10=10}}\end{gathered}

Thus;

Relationship between zeroes and coefficient is verified .

Similar questions