Math, asked by swarishreddy01, 2 months ago

find the zero of the following quadratic polynomial 3x²-5x-2 and verify the relationship between the zeros and the cofficent​

Answers

Answered by SparklingBoy
108

 \color{green}\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \: GIVEN \:  \:  \:  \maltese }}}}

  \large\mathfrak{Quadratic \:  \:Polynomial  \:  \: is}

  \green {\bold{ {3x}^{2}  - 5x - 2 }}

 \color{red}\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \:  TO  \:  \: FIND  \:  \:  \:  \maltese }}}}

 \large \mathfrak{Zeros  \:  \: of  \:  \: the  \:  \: Polynomial}

 \huge \mathcal{ALSO}

 \mathfrak{ \text{T}o  \:  \:  \text{V}erif \text{y} \:  \:  Relationship}  \\  \\  \mathfrak {between  \:  \: Zeros \:  \:  \text {A}nd  \:  \: Coefficients}

 \color{purple}\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \: SOLUTION \:  \:  \:  \maltese }}}}

 \bf {3x}^{2}  - 5x - 2 \\  \\  {3x}^{2}  - 6x + x - 2 \\  \\ 3x(x - 2) + 1(x - 2) \\  \\ (x - 2)(3x + 1)

So,

 \large \mathfrak{ \text{T}he \:  \:  Zeros  \:  \:  \text{A}re} \\  \\ 2 \:  \:  \mathcal{ And} \:  \:  \frac{-1}{3}

 \color{red}\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \: RELATIONSHIP \:  \:  \:  \maltese }}}}

  \small\mathcal{SUM  \:  OF  \:  ZEROS } =  \bf \frac{ - (coeff. \: of \: x)}{(coeff. \:of \: x {}^{2} )}  \\  \\   \small\mathcal{PRODUCT \:  OF \:  ZEROS } =  \bf \frac{(constant \: term}{(coeff. \: of \:  {x}^{2} )}

\small \qquad \qquad\green{ \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \:  {VERIFYING \:  RELATIONSHIP \:  \:  \:  \maltese }}}}}}

 \bf SUM  = 2 + ( -  \frac{1}{3} ) \\  \\  =  \bf  \frac{5}{3}  \:  \:  \:  \: (verified)

 \bf PRODUCT = 2 \times ( -  \frac{1}{3} ) \\  \\  =  \bf -  \frac{2}{3}  \:  \:  \:  \:  \: (verified)

Answered by BrainlyRish
58

Given that , The Quadratic Polynomial is 3x²-5x-2 .

Exigency To Find : The Zeroes & Verify the relationship between the zeroes and the cofficient ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \qquad \underline{\pmb{\mathbb{\bigstar \:\:QUADRATIC \:\:POLYNOMIAL \:\:}}}\::\:\underline {\sf 3x^2 - 5x - 2 \: \:}\\\\

⠀⠀⠀》 Finding , the zeroes of Polynomial .

 \qquad:\implies\:\: \sf 3x^2\:\: -\:\: 5x\:\: - 2\:\: = \:0\:\:\\\\ \qquad:\implies \sf 3x^2\:\: - 6x \:\:+ x \:\:- 2 \:=\:0\\\\ \qquad:\implies \sf 3x\:\:( \:\:x -\:\: 2 \:\:) \:\: +\:\: 1\:\: (\:\: x \:\:- 2 \:\:) \:\:=\:\:0\\\\ \qquad:\implies \sf ( \:\:3x +\:\: 1 \:\:) \:\:  (\:\: x \:\:- 2 \:\:) \:\:=\:0\:\\\\ \qquad:\implies \underline {\boxed {\pmb{\pink{ \frak { \: x\: \:\:=\:\:-\dfrac{1}{3}\:or\:2 \:\:}}}}}\:\:\bigstar \\\\

\qquad \therefore \underline {\sf Hence,  \:The \:zeroes \:of \:given \:polynomial \:are \: \pmb{\bf -1/3 \:and \:2 \;}\:.}\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \bigstar \:\:\underline {\sf Verification\:of \:relationship \:b/w \: it's \:zeroes \:and \:coefficient's \:\::}\:\:\\\\

⠀⠀⠀⠀⠀Here , The zeroes of Polynomial are -1/3 & 2 [ α & β ].

\qquad \underline {\boxed {\pmb{ \:\maltese \:Sum \:\: of \:\:zeroes \:\:\purple{ \:(\: \alpha + \beta \;)\:} \:: \: }}}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:+\:\beta \:\Big\} \:=\:\:\dfrac{ -( \:Coefficient \:of \:x\:)}{ Coefficient \:of \:x^2 } \: \\\\\dashrightarrow \sf \Bigg\{ \: 2 \:+\:\bigg( - \dfrac{1}{3}\bigg) \:\Bigg\} \:=\:\:\dfrac{ -( \:-5\:)}{ 3 } \: \\\\ \dashrightarrow \sf \Bigg( \: 2 \: - \dfrac{1}{3} \:\Bigg) \:=\:\:\dfrac{ 5\:}{ 3 } \: \\\\ \dashrightarrow \sf \Bigg( \:  \dfrac{6 - 1 }{3} \:\Bigg) \:=\:\:\dfrac{ 5\:}{ 3 } \: \\\\\dashrightarrow \sf \:  \dfrac{5 }{3} \: \:=\:\:\dfrac{ 5\:}{ 3 } \: \\\\ \dashrightarrow \underline {\boxed {\pmb{\pink{ \frak { \:   \dfrac{5 }{3} \: \:=\:\:\dfrac{ 5\:}{ 3 } \:\:\:}}}}}\:\:\bigstar\\\\

⠀⠀⠀⠀⠀AND ,

\qquad \underline {\boxed {\pmb{ \:\maltese \:Product \:\: of \:\:zeroes \:\:\purple{ \:(\: \alpha  \beta \;)\:} \:: \: }}}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:\:\beta \:\Big\} \:=\:\:\dfrac{ \:Constant \:Term\:}{ Coefficient \:of \:x^2 } \: \\\\\dashrightarrow \sf \Bigg\{ \: 2 \:\times \:\bigg( - \dfrac{1}{3}\bigg) \:\Bigg\} \:=\:\:\dfrac{  \:-2\:}{ 3 } \: \\\\ \dashrightarrow \sf \Bigg( \: 2 \:\times  \dfrac{-1}{3} \:\Bigg) \:=\:\:\dfrac{ -2\:}{ 3 } \: \\\\ \dashrightarrow \sf \Bigg( \:  \dfrac{-2 }{3} \:\Bigg) \:=\:\:\dfrac{ -2\:}{ 3 } \: \\\\\dashrightarrow \sf \:  \dfrac{-2 }{3} \: \:=\:\:\dfrac{ -2\:}{ 3 } \: \\\\ \dashrightarrow \underline {\boxed {\pmb{\pink{ \frak { \:   -\dfrac{2 }{3} \: \:=\:\:-\dfrac{ 2\:}{ 3 } \:\:\:}}}}}\:\:\bigstar\\\\

\qquad \therefore \pmb{\bf Hence \: Verified \:!\:}\\

Similar questions