find the zero of the following quadratic polynomial and verify the relationship between zeros and the coefficients.
Answers
Step-by-step explanation:
(1) let 16y²+48=0 => y²= -3 => y = ±i√3
=> zeroes are +i√3 and -i√3
where i=√(-1)
verification:- alfa+ beta= i√3+(-i√3) = 0
-b/a = 0/16 = 0
alfa×beta = i√3 × -i√3= 3
c/a= 48/16 = 3
(2) let x²-9=0 => x =±3
=> zeroes are +3 and -3
verification:- alfa+beta = 3+(-3) = 0
-b/a= 0/1= 0
alfa×beta = 3×(-3) = -9
c/a= -9/1 = -9
(3) let t²-14=0 => t= ±√14
=> zeroes are √14 and -√14
verification:- alfa+ beta = √14+(-√14)= 0
-b/a = 0/1= 0
alfa×beta = -14
c/a= -14/1 = -14
(4) let x²+7x+12= 0=> x= -4 and x= -3
=> zeroes are -4 and -3
verification:- alfa+beta = -4+(-3)= -7
-b/a= -7/1= -7
alfa×beta = -4×-3=12
c/a= 12/1= 12