Math, asked by isha15032005, 10 months ago

find the zero of the polynomial and verify the relationship between the zeros and the coefficient 4u²+8u​

Answers

Answered by Sudhir1188
3

Step-by-step explanation:

PLEASE FIND THIS ATTACHMENT.

HOPE THIS WILL HELP U.

KEEP LEARNING AND KEEP PRACTICING

Attachments:
Answered by TheBrainlyWizard
68

\bf{\underline{\underline{Given\: :}}}

\mathsf{\bigstar\: Polynomial = 4u^{2} + 8u} \\ \\

\bf{\underline{\underline{To\: find\: :}}}\\

\mathsf{\bigstar\: Zeroes\:of\:the\:polynomial}\\ \\

\bf{\underline{\underline{Solution\: :}}}\\

\mathsf{For\:zeroes\:of\:polynomial}\\

\mathtt{\implies\: 4u^{2} + 8u = 0}

\mathtt{\implies\: 4u(u + 2) = 0}\\

\mathtt{\implies\: 4u = 0 \: ; \: u + 2 = 0}\\

\mathtt{\implies\: u = \frac{0}{4} \: ; \: u = -2}\\

\mathtt{\implies\: u = 0 \: \: or \: \: -2}\\ \\

\bf{\underline{\underline{Verification \: :}}}\\

\mathsf{\red{\diamond\: \: Sum\:of\:zeroes = \frac{-(x \:\: coeffiecient)}{x^{2}\: \:coefficient} }}\\

\mathtt{\rightarrow\: 0 + (-2) = \frac{-8}{4}}\\

\mathtt{\rightarrow\: -2 = -2}\\ \\

\mathsf{\green{\diamond\: \: Product\:of\:zeroes = \frac{constant\:\:term}{x^{2}\:\: coefficient} }}\\

∵ There is no constant term

∴ Constant term = 0

\mathtt{\rightarrow\: 0 × (-2) = \frac{0}{4}}\\

\mathtt{\rightarrow\: 0 = 0}\\

\mathsf{In\:both\:the\:cases\:\: LHS = RHS}\\

∴ Hence Proved

Similar questions