Math, asked by pranavkothai, 10 months ago

find the zero of the polynomial and verify the relationship between the zeroes and the coefficients


p^{2} -30

Answers

Answered by Anonymous
8

Answer:

p²- (√30)²= 0

(p+√30) (p - √30) = 0

p+ √30 = 0 p - √30 = 0

p = -√30 p = √30

a+ b = -b/a

-√30+√30 = -0/1

0 = 0

a(b) = c/a

-√30(√30) = -30/1

-30 = -30

If it helped you then mark it as brainliest ☺️ Thank you ❣️

Answered by Anonymous
28

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

The quadratic polynomial p² - 30.

\bf{\red{\underline{\bf{To\:find\::}}}}

The zeroes and verify the relationship between the zeroes & coefficient.

\bf{\red{\underline{\bf{Explanation\::}}}}

We have p(x) = p² - 30.

Zero of the polynomial p(x) = 0

So;

\longrightarrow\sf{p^{2} -30=0}\\\\\longrightarrow\sf{p^{2} =30}\\\\\longrightarrow\sf{p=\pm\sqrt{30} }

∴ The α = √30 and β = -√30 are the zeroes of the polynomial.  

As the given quadratic polynomial as we compared with ax² + bx + c ;

  • a = 1
  • b = 0
  • c = -30

So;

\underline{\green{\mathcal{SUM\:OF\:THE\:ZEROES\::}}}

\longrightarrow\sf{\alpha +\beta =\dfrac{-b}{a} =\dfrac{Coefficient\:of\:x}{Coeeficient\:of\:x^{2} } }\\\\\\\longrightarrow\sf{\sqrt{30} +(-\sqrt{30} )=\dfrac{0}{1} }\\\\\\\longrightarrow\sf{\sqrt{30} -\sqrt{30} =0}\\\\\\\longrightarrow\sf{\pink{0=0}}

\underline{\green{\mathcal{PRODUCT\:OF\:THE\:ZEROES\::}}}}

\longrightarrow\sf{\alpha \times \beta =\dfrac{c}{a} =\dfrac{Constant\:term}{Coeeficient\:of\:x^{2} } }\\\\\\\longrightarrow\sf{\sqrt{30} \times (-\sqrt{30} )=\dfrac{-30}{1} }\\\\\\\longrightarrow\sf{\sqrt{30\times (-30)}=-30}\\\\\\\longrightarrow\sf{\pink{-30=-30}}

Thus;

Relationship between zeroes and coefficient is verified .

Similar questions