Math, asked by Bhushan8026, 10 months ago

Find the zero of the polynomial t^2 -15 and verify the relationship between the zero and coefficient

Answers

Answered by ShírIey
97

AnswEr:

\star\;\bold{\underline{\sf{Given\: Polynomial\: : \: t^2 \:-15}}}

\implies\sf t^2 - (\sqrt{15})^2

\:\:\:\:\:\:\:\small\bold{\underline{\sf{\pink{Using\: Identity\; a^2 - b^2 \:=\: (a \:-\:b) (a\:+\:b)}}}}

\implies\sf (t - \sqrt{15}) (t + \sqrt{15}) = 0

\implies\sf t = \sqrt{15} \:\&\; t = - \sqrt{15}

\sf{\therefore\; Zeroes\; of \; the \: Given \; polynomial \; are \; \sqrt{15} \:\&\; -\sqrt{15}}

\implies\sf \alpha = \sqrt{15} \:\& \: \beta = - \sqrt{15}

\rule{150}2

\:\;\:\:\;\;\;\;\;\;\;\dag\bold{Sum\: of \; Zeroes}

\implies\sf \alpha + \beta = -\dfrac{b}{a}

\implies\sf \sqrt{15} - \sqrt{15} = -\dfrac{0}{1}

\implies\sf 0 = 0

\:\;\:\:\;\;\;\;\;\;\;\dag\bold{Product\: of \; Zeroes}

\implies\sf \alpha \;\beta = \dfrac{c}{a}

\implies\sf (\sqrt{15}) (-\sqrt{15}) = \dfrac{-15}{1}

\implies\sf -(\sqrt{15})^2 = \dfrac{-15}{1}

\implies\sf -15 = -15

\large\bold{\underline{\sf{\purple{Hence,\: verified!}}}}


Anonymous: Fantastic!
Answered by MsPRENCY
50

Explanation :

\rule{100}2

Concept :

So basically, in this question we've to find zeroes of the polynomial t² - 15.

But something is missing here, isn't it?

We know that, 15 can be written as ( √15 )² . Now move towards it's solution :-

Solution :

\sf t^2 - 15

\sf = t^2 - (\sqrt{15})^2

\sf = ( t - \sqrt{15}) (t+\sqrt{15})

For finding zeroes :

t - √15 = 0

⇒ t = √15

∴ α = √15

Also,

t + √15 = 0

⇒ t = - √15

∴ β = - √15

Finally,

Verification :

Here, a = 1; b = 0 ; c = - 15 __________ ( from equation )

We know that,

sum of zeroes ( α + β ) = - b /a

⇒ √15 + ( - √15 ) = 0/1

⇒ 0 = 0

L.H.S = R.H.S

Also,

Product of zeroes ( αβ ) = c/a

⇒ √15 × ( - √15 ) = - 15/1

⇒ -15 = -15

L.H.S = R.H.S

Hence verified!

\rule{200}2

Similar questions