Math, asked by navdeep2491, 9 months ago

Find the zero of the polynomial t² -15 and verify the relationship between the zero and coefficient​

Answers

Answered by Anonymous
40

\rule{250}3

\huge\sf\red{Given\::}\\

\sf{Polynomial\: : \: t^2 \:-15}

\leadsto\:\:\sf t^2 - (\sqrt{15})^2

\rule{250}3

\huge\sf\pink{Solution\::}

\small{\underline{\boxed{\sf{ a^2 - b^2 \:=\: (a \:-\:b) (a\:+\:b)}}}}

\leadsto\:\sf (t - \sqrt{15}) (t + \sqrt{15}) = 0

\leadsto\:\sf t = \sqrt{15} \:\:\:\; t = - \sqrt{15}

\leadsto\:\sf \alpha = \sqrt{15} \:\:\: \: \beta = - \sqrt{15}

\sf Zeroes\; of \; the \: Given \; polynomial \; =\; \sqrt{15} \:\:\:\; -\sqrt{15}

\rule{250}3

\sf\green{Sum\: of \: Zeroes\::}

\leadsto\:\sf \alpha + \beta = -\dfrac{b}{a}

\leadsto\:\sf \sqrt{15} - \sqrt{15} = -\dfrac{0}{1}

\leadsto\:\sf 0 = 0

\rule{250}3

\sf\purple{Product\: of \; Zeroes\::}

\leadsto\:\sf \alpha \;\beta = \dfrac{c}{a}

\leadsto\:\sf (\sqrt{15}) (-\sqrt{15}) = \dfrac{-15}{1}

\leadsto\:\sf -(\sqrt{15})^2 = \dfrac{-15}{1}

\leadsto\:\sf -15 = -15

\large\bold{\underline{\sf{\red{Hence\: verified\:!!}}}}

\rule{250}3

Similar questions