Math, asked by yashika847, 1 year ago

Find the zero of the quadratic polynomials and verify the relationship between the zero and the coefficient :-

x² -2x -8

Answers

Answered by ramadevisubhadra
1

F(X)=x^2-20x+91 

comparing the equation with ax^2+bx+c=0 

a=1,=-20,c=91 

factorising this equation we get 

=x^2-13x-7x+91 

(x-13)(x-7)=0


so there are 2 factors 

first zero  :x-7=0 

second zero  x-13=0 

x=13 

x=7 

sum of zero=7+13=20 

product of zero=91 

for equaion ax^2+bx+c=0 

if zero are alpha and beta 

plug the values of a,b, c 

sum of zreos  -b/a=-(-20/1)=20 

product of zeros  c/a=91/1=91 

Answered by yakshitakhatri2
5

 \:  \:  \:  \:  \:  \:  \: \huge\colorbox{lightgreen}{αɳʂɯҽɾ ♥︎} \\  \\  \\   \\ {\sf{\pink{∴ {x}^{2}  - 2x - 8 = 0 }}} \\ \:  \:  \:   {\sf{a {x}^{2} + bx + c = 0}} \\ {\sf{∴a = 1, \: b =  - 2, \: c =  - 8}} \\  \\ {\sf{\pink{∴ {x}^{2} - 4x + 2x - 8 = 0 }}} \\ {\sf{↠ \: x(x - 4) + 2(x - 4) = 0}} \\ {\sf{↠ \: (x - 4)(x + 2) = 0}} \\ {\underline{\underline{\sf{\bold{\purple{∴x = 4}}}}}}  \:  \:  \: \: {\sf{or}} \:  \:  \:  \: {\underline{\underline{\sf{\bold{\purple{∴x =  - 2}}}}}} \\  \\  \\ {\sf{\green{Verification  \: ✓}}} \\  {\sf{\pink{sum \: of \: zeroes =  \frac{ - b}{a}  =  \frac{ - ( - 2)}{1}  =  - 2}}}  \\  \\  {\sf{\pink{product \: of \: zeroes =  \frac{c}{a}  =   \frac{ - 8}{1}  =  - 8}}} \\  \\  \\  \\ {\sf{Hence, verified.}}

Similar questions