Math, asked by ishpreet25, 9 months ago

Find the zero of the root of the following:- 1. 2x^2+5x+7​

Answers

Answered by UtsavPlayz
4

2 {x}^{2}  + 5x + 7 = 0

Using the Quadratic Formula,

 x =  \frac{ - b ±  \sqrt{ {b}^{2} - 4ac } }{2a}

x =  \frac{ - 5 ±  \sqrt{ {5}^{2} - 4(2)(7) } }{2(2)}  \\ x =   \frac{ - 5 ±  \sqrt{25 - 56} }{4}  \\ x =   \frac{ - 5 ±  \sqrt{ - 31} }{4}  \\ x =   \frac{ - 5 ± i \sqrt{31} }{4} \\</p><p>x =   \frac{ - 5 + i \sqrt{31} }{4}  \\</p><p>x =   \frac{ - 5 - i \sqrt{31} }{4}

Hope It Helps.

Stay Home Stay Safe.

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x=\frac{-5\pm\sqrt{31}\iota}{4}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {2x}^{2}  + 5x + 7 = 0 \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Zeroes \: of \: quadratic = ?

• According to given question :

 \tt \circ \:  {2x}^{2}  + 5x + 7 = 0 \\  \\    \tt \circ \: a = 2 \\  \\  \tt \circ \: b = 5 \\  \\  \tt \circ \: c = 7  \\  \bold{As \: we \: know \: that} \\   \tt:  \implies D =  {b}^{2}  - 4ac \\  \\ \tt:  \implies D = {5}^{2}  - 4 \times 7 \times 2 \\  \\ \tt:  \implies D = 25 - 56 \\  \\ \tt:  \implies D =  - 31 \\  \\  \tt:  \implies x=  \frac{ - b \pm \sqrt{D} }{2a}  \\  \\ \tt:  \implies x =  \frac{ - 5 \pm \sqrt{ - 31} }{2 \times 2 }  \\   \\  \tt \circ \:  \sqrt{ - 31} =  \sqrt{31}  \iota \\    \\  \green{\tt:  \implies x =  \frac{ - 5 \pm \sqrt{31} \iota }{4} }

Similar questions