Math, asked by samarth4491, 1 year ago

find the zero or zeros of the polynomial and verify the relationship between the zeros and coefficients f(x)=√2x^2+5x√3​

Answers

Answered by MaheswariS
2

Answer:

The zeros are  -\sqrt2, \frac{-3}{\sqrt2}

Step-by-step explanation:

f(x)=\sqrt2x^2+5x+3\sqrt2

f(x)=\sqrt2x^2+2x+3x+3\sqrt2

f(x)=\sqrt2x(x+\sqrt2)+3(x+\sqrt2)

f(x)=(\sqrt2x+3)(x+\sqrt2)

The zeros are -\sqrt2,\frac{-3}{\sqrt2}

sum of the zeros

=\frac{-b}{a}

=\frac{-5}{\sqrt2}

product of the zeros

=\frac{c}{a}

=\frac{3\sqrt2}{\sqrt2}

=3

Verification:

sum of the zeros

=-\sqrt2+\frac{-3}{\sqrt2}

=\frac{-2-3}{\sqrt2}

=\frac{-5}{\sqrt2}

product of the zeros

=(-\sqrt2)(\frac{-3}{\sqrt2})

=3

Hence verified

Answered by Anonymous
3

Step-by-step explanation:

f(x)=\sqrt2x^2+5x+3\sqrt2f(x)

f(x)=\sqrt2x^2+2x+3x+3\sqrt2f(x)

f(x)=\sqrt2x(x+\sqrt2)+3(x+\sqrt2)f(x)

f(x)=(\sqrt2x+3)(x+\sqrt2)f(x)

→ Sum of the zeros

=\frac{-b}{a}</p><p></p><p>[tex]=\frac{-5}{\sqrt2}

→ Product of the zeros

=\frac{c}{a}

=\frac{3\sqrt2}{\sqrt2}

Similar questions