find the zeroes.
it will help if u will do it in copy, click &send...
Answers
Question :-
- Polynomial = 2x⁴ - 3x³ - 3x² + 6x - 2.
- Two Roots are = √2 & (-√2).
Concept used :-
- if a & b are the zeros of Polynomial than (x - a)(x - b) is Completely Divide The given polynomial , or Remainder will be Zero.
Solution :-
Given zeros = √2 and -√2
so,
→ (x - √2) (x + √2)
→ (x² - 2) will Divide the Polynomial .
now,
Divide Process :-
x² - 2)2x⁴ - 3x³ - 3x² + 6x - 2(2x² - 3x + 1
2x⁴ -4x²
-3x³ +x² + 6x
-3x³ + 6x
x² - 2
x². - 2
__0__
we get the quotient :- 2x² - 3x + 1
Putting Quotient Equal to Zero , & splitting the middle term, we get,
→ 2x² - 3x + 1 = 0
→ 2x² - 2x - x + 1 = 0
→ 2x(x - 1) -1(x - 1) = 0
→ (2x - 1)(x - 1) = 0
Putting Both Equal to Zero Now,
→ 2x - 1 = 0
→ 2x = 1
→ x = 1/2
and,
→ x - 1 = 0
→ x = 1
Hence, all the zeroes of the given Polynomial are {√2 , -√2 , ½ , 1} .
Given
Polynomial = 2x⁴ - 3x³ - 3x² + 6x - 2
Two zeros = √2 & -√2
To find
All the zeros of polynomial.
Solution
Here, two zeros are √2 & -√2 .
According to remainder theorem,(x - a)(x - b) will be the required divisor of the given polynomial.
➛ (x - a)(x - b) = Divisor
➛ (x - √2)(x - (-√2)) = Divisor
➛ (x - √2)(x + √2) = Divisor
➛ x² - (√2)² = Divisor
➛ x² - 2 = Divisor
Now dividing given polynomial by (x² - 2)
x² - 2)2x⁴ - 3x³ - 3x² + 6x - 2(2x² - 3x + 1
2x⁴ -4x²
(-) (+)
-3x³ + x² + 6x -2
-3x³ - 6x
(+) (+)
x² - 2
x² - 2
(-) (+)
0
So, quotient = 2x² - 3x + 1
⇒ 2x² - 3x + 1 = 0
⇒ 2x² - 2x - x + 1 = 0
⇒ 2x(x - 1) - 1(x - 1) = 0
⇒ (2x - 1)(x - 1) = 0
⇒ 2x = 1 or, x = 1
⇒ x = ½ or, x = 1
So, other two zeros = ½ & 1
Therefore,
All zeros of polynomial are: √2 , -√2, ½ & 1