Math, asked by Anonymous, 10 months ago

Find the zeroes of 15x2 – 11x + 2 and verify the relation between the zeroes and coefficients.

Answers

Answered by Ïmpøstër
14

15 {x}^{2}  - 11x + 2 = 0 \\  \\ 15 {x}^{2}  - 6x - 5x + 2 = 0 \\  \\ 3x(5x - 2) - 1(5x - 2) = 0 \\  \\ (3x - 1)(5x - 2) = 0 \\  \\ x =  \frac{1}{3} .................x =  \frac{2}{5}

Answered by TheProphet
5

Solution :

We have quadratic polynomial p(x) = 15x² - 11x + 2

Zero of the polynomial p(x) = 0

\longrightarrow\sf{15x^{2} -11x+2=0}\\\\\longrightarrow\sf{15x^{2} -5x-6x+2=0}\\\\\longrightarrow\sf{5x(3x-1)-2(3x-1)=0}\\\\\longrightarrow\sf{(3x-1)(5x-2)=0}\\\\\longrightarrow\sf{3x-1=0\:\:\:Or\:\:\:5x-2=0}\\\\\longrightarrow\sf{3x=1\:\:\:Or\:\:\:5x=2}\\\\\longrightarrow\bf{x=1/3\:\:\:Or\:\:\:x=2/5}

∴ We get α = 1/3 & β = 2/5 are the zeroes of the polynomial .

As we know that given polynomial compared with ax² + bx + c;

  • a = 15
  • b = -11
  • c = 2

Now;

\underline{\mathcal{SUM\:OF\:THE\:ZEROES\::}}

\longrightarrow\tt{\alpha +\beta =\dfrac{-b}{a} =\bigg\lgroup\dfrac{Coefficient\:of\:x}{Coefficient\:of\:x^{2} } \bigg\rgroup}}\\\\\\\longrightarrow\tt{\dfrac{1}{3} +\dfrac{2}{5} =\dfrac{-(-11)}{15} }\\\\\\\longrightarrow\tt{\dfrac{5+6}{15} =\dfrac{11}{15} }\\\\\\\longrightarrow\bf{\dfrac{11}{15} =\dfrac{11}{15} }

\underline{\mathcal{PRODUCT\:OF\:THE\:ZEROES\::}}

\longrightarrow\tt{\alpha \times \beta =\dfrac{c}{a} =\bigg\lgroup\dfrac{Constant\:term}{Coefficient\:of\:x^{2} } \bigg\rgroup}}\\\\\\\longrightarrow\tt{\dfrac{1}{3}\times \dfrac{2}{5} =\dfrac{2}{15} }\\\\\\\longrightarrow\bf{\dfrac{2}{15} =\dfrac{2}{15} }

Thus;

The relationship between zeroes & coefficient are verified .

Similar questions