English, asked by hehehewhba, 3 months ago

find the zeroes of 2x^2 - 3x - 2 and verify the relation between zero and coefficient​

Answers

Answered by Anonymous
3

2 {x}^{2}  - 3x - 2 \\  \\  =  > 2 {x}^{2} - 4x + x - 2 \\  \\  =  > 2x(x - 2) + 1(x - 2) \\  \\  =  > (x - 2)(2x + 1)

Then, zeroes will be 2 and -1/2 ✔✔

Answered by CuteAnswerer
16

GIVEN :

  • \sf {2x^2 - 3x - 2}

TO DO :

  • Find the zeros and verify the relation between zero and coefficient.

SOLUTION :

\implies \sf{2x^2 - 3x - 2  = 0} \\  \\

\implies \sf{2x^2 - 4x  + x- 2  = 0} \\  \\

\implies \sf{2x \big(x - 2 \big)+ 1 \big(x- 2 \big)  = 0} \\  \\

\implies \sf{\big(x  - 2 \big) \big(2x + 1 \big)  = 0} \\  \\

\implies \sf{\big(x - 2 \big) = 0 \:  , \: \big(2x + 1 \big)  = 0} \\  \\

 \implies\sf{x  = 0  + 2\:  , \: 2x = 0 - 1} \\ \\

\implies\sf{x  = 2\:  , \: 2x =  - 1} \\ \\

 \implies \underline {\boxed{ \red{\bf{x  = 2\:  , \: x =   \dfrac{- 1}{2}}}}} \\ \\

Verifying the relation between zero and coefficient :

  • Here , a =2 , b=-3 and c = -2

Sum of zeros :

 \implies \sf {\alpha  +  \beta  =  \dfrac{ - b}{a} } \\  \\

 \implies \sf {2  + \dfrac{ - 1}{2}   =  \dfrac{ -( - 3 )}{2} } \\  \\

\implies \sf {\dfrac{ 4 + (- 1)}{2}   =  \dfrac{ 3}{2} } \\  \\

\implies \sf {\dfrac{ 4- 1}{2}   =  \dfrac{ 3}{2} } \\  \\

\implies { \boxed{\bf{ \pink{\dfrac{ 3}{2}   =  \dfrac{ 3}{2} }}}} \\  \\

Product of zeros :

\implies \sf{\alpha  \beta   =  \dfrac{c}{ a}}  \\  \\

 \implies \sf{ \cancel{2 }\times   \dfrac{ - 1}{ \cancel{2}}    =   \cancel{\dfrac{ - 2}{ 2}}}    \\  \\

\implies{ \underline  {\boxed{ \pink{\bf{ - 1=   - 1}}}}}

\huge {\green{\therefore }} Verified.


Saby123: Perfect !!!!
Anonymous: Well done!
Similar questions