Math, asked by varadjrane2597, 1 year ago

Find the zeroes of 2x^2-x-10

Answers

Answered by Anonymous
1

Solution :

The given polynomial :

f(x) = 2x² - x - 10

2x² +4x-5x -10 = 0

2x(x+2)-5(x+2) = 0

(2x-5)(x+2) = 0

So, Zeros of Polynomial ;

f(x) = 2x - 5

2x - 5 = 0

x = 5/2

Other Zero of Polynomial:

f(x) = x+2

x+2 = 0

x = - 2

Answered by abdul9838
2

<b> <body \: bgcolor = "skyblue">

 \huge \: hola \\  \\ hey \: dude \: here \: is \: ans \\  \\  Question \\  \\ </p><p></p><p> \underline{Find \:  the  \: Zeros???} \\  \\ </p><p></p><p></p><p> \huge \: Answer \\  \\  given \: that\\  \\  \bf \: 2 {x}^{2}  - x - 10 = 0</p><p> \\  \\  </p><p></p><p>Step \:  by  \: step \:  explaination \\  \\  \bf \: as \: we \: know \: that \\  \\  \bf \: sum \: of \: zeros =  -  \frac{b(where \: b \: cofficient \: of \: x)}{a(where \: a \: cofficient \: of \: {x}^{2} ) }  \\  \\  \bf \: sum \: of \: zeros =  -  \frac{( - 1)}{2}  \\  \\  \bf \: sum \: of \: zeros =  \frac{1}{2}  \\  \\  \bf \: product \: of \: zeros =  \frac{c(where \: c \: constant \: term)}{a(cofficient \: of \:  {x}^{2} )}  \\  \\  \bf \: product \: of \: zeros\:  =  -  \frac{10}{2}  \\  \\  \bf \: product \: of \: zeros =  - 5

 &lt;marquee \: = slide \: bgcolor ="blue"&gt;

 \huge \: Follow \:  me

Similar questions