Math, asked by asrikothuru, 10 months ago

Find the zeroes of 3√2x² +13x +6√2 and verify the relation between the zeroes and coefficients of the polynomial.​

Answers

Answered by Anonymous
100

\huge\underline\mathrm{Question-}

Find the zeroes of 3√2x² +13x +6√2 and verify the relation between the zeroes and coefficients of the polynomial.

\huge\underline\mathrm{Explanation-}

Given polynomial :

\rm{3\sqrt{2}x^2+13x+6\sqrt{2}}

Equate it to zero.

\rm{3\sqrt{2}x^2+13x+6\sqrt{2}} = 0

Sum = 13

Product = 6√2 × 3√2 => 18 × 2 = 36

Factors = (9, 4)

By using splitting middle term method,

: \implies \rm{3\sqrt{2}x^2+9x+4x+6\sqrt{2}} = 0

By taking as common,

: \implies \rm{3x(\sqrt{2}x+3)+2\sqrt{2}(\sqrt{2}x+3)} = 0

: \implies \rm{(3x+2\sqrt{2})(\sqrt{2}x+3)} = 0

: \implies \rm{3x+2\sqrt{2}} = 0 and \rm{\sqrt{2}x+3} = 0

Solving it, we get,

\large{\boxed{\mathrm{\red{x=-\dfrac{2\sqrt{2}}{3}\:and\:-\dfrac{3}{\sqrt{2}}}}}}

Now,

★ sum of zeroes = \rm{-\dfrac{2\sqrt{2}}{3}} + ( \rm{-\dfrac{3}{\sqrt{2}}} )

: \implies \rm{\dfrac{-13}{3\sqrt{2}}}

★ Product of zeroes = \rm{-\dfrac{2\sqrt{2}}{3}} × ( \rm{-\dfrac{3}{\sqrt{2}}} )

: \implies 2

\rule{200}2

Verification :

Sum of zeroes = \dfrac{-b}{a}

: \implies \dfrac{-13}{3\sqrt{2}}

Product of zeroes = \dfrac{c}{a}

: \implies = \cancel{\dfrac{6\sqrt{2}}{3\sqrt{2}}}

: \implies 2

Hence verified!

Answered by Anonymous
66

\huge{\underline{\underline{\pink{\mathfrak{AnSwEr :}}}}}

We are given polynomial

\large{\boxed{\sf{3 \sqrt{2} x^2 \: + \: 13x \: + \: 6 \sqrt{2} \: = \: 0}}}

Use Splitting The Middle Term Method

 \implies \sf{3 \sqrt{2} \:   {x}^{2}  + 13x  \:  +  \: 6 \sqrt{3}  = 0} \\  \\  \implies \sf{3  \sqrt{2}  {x}^{2}  + 9x \:  + 4x \: +  6 \sqrt{2} = 0 } \\  \\  \implies \sf{3x( \sqrt{2}x \:  +  \: 3x) \:  +  \: 2 \sqrt{2} (  \sqrt{2} x \:  + \:   3)  = 0} \\  \\  \implies \sf{( \sqrt{2}x  \: + \: 3)(3x \:  +  \:  \sqrt{2}  x) \:  =  \: 0 } \\  \\  \implies \sf{3x \:  +  \: 2 \sqrt{2} \: \:  and \: \:  \sqrt{2}  x \:  +  \: 3 = 0 } \\  \\  \implies  {\boxed{\sf{x \:  =  \:   -  \dfrac{ 2\sqrt{2}}{3} \:  \: and \:  \:  \dfrac{ - 3}{ \sqrt{2} }  }}}

\rule{200}{1}

\large{\boxed{\sf{Sum \: of \: zeros  \: = \: \dfrac{-b}{a}}}}

\implies {\sf{\dfrac{-2 \sqrt{2}}{3} \: + \: ( - \dfrac{3}{\sqrt{2}}) \: = \: \dfrac{-(13)}{3 \sqrt{2}}}}

\implies {\sf{\dfrac{-13}{3 \sqrt{2}} \: = \: \dfrac{-13}{3 \sqrt{2}}}}

\Large{\mathbb{L.H.S \: = \: R.H.S}}

Hence Proved

Similar questions