Math, asked by Ravirayparis, 1 year ago

find the zeroes of √3x^2 +10x +7√3

Answers

Answered by Annabeth
189
 \sqrt{3}  x^{2}  + 10x + 7 \sqrt{3}  \\  =\sqrt{3} x^{2}  +  3x + 7x +7 \sqrt{3} \\ = \sqrt{3} x^{2}  +  \sqrt{3}  \sqrt{3}    x + 7x +7 \sqrt{3}  \\ = \sqrt{3}x(x+ \sqrt{3} ) +7 (x + \sqrt{3} ) \\= (  \sqrt{3} x + 7)(x +  \sqrt{3})
Answered by pinquancaro
90

Answer:

The zeros are x=-\frac{7}{\sqrt {3}},-\sqrt {3}    

Step-by-step explanation:

Given : Expression \sqrt { 3 } x ^ { 2 } + 10 x + 7 \sqrt { 3 }

To find : The zeros of the expression?

Solution :

Quadratic expression \sqrt { 3 } x ^ { 2 } + 10 x + 7 \sqrt { 3 }=0

We solve the quadratic by splitting middle term split,

=\sqrt { 3 } x ^ { 2 } + 3 x + 7 x + 7 \sqrt { 3 }

=\sqrt { 3 } x ( x + \sqrt { 3 } ) + 7 ( x + \sqrt { 3 } ) }

=(\sqrt {3}x+7)(x+\sqrt {3})

Therefore, The zeros are x=-\frac{7}{\sqrt {3}},-\sqrt {3}

Similar questions