Math, asked by aasthapai2702, 1 month ago

find the zeroes of 3x^2 -10x +7 and also verify the relation between the zeroes​

Answers

Answered by LoverBoy346
2

Step-by-step explanation:

3 {x}^{2}  - 10x  + 7 = 0

3 {x}^{2}  - 3x - 7x  + 7 = 0

3x(x - 1) - 7(x - 1) = 0

(x - 1)(3x - 7) = 0

x = 1 \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \frac{7}{3}

Let, \alpha  \: and \:  \beta \:  be  \: the  \: zeroes  \: of  \: the \:  quadratic \:  polynomial.

 \alpha  = 1 \:  \: and \:  \:  \:  \beta  =  \frac{7}{3}

 \bold{We \:  know  \: that,}

sum \:  of \:  zeroes  =  \alpha  +  \beta  =  \frac{ - b}{a}

 \implies \: 1 +  \frac{7}{3}  =  \frac{ - 10}{ 3}

 \implies \frac{3 + 7}{3}  =  \frac{10}{3}

 \implies \frac{10}{3}  =  \frac{10}{3}

product \:  o f \:  its \:  zeroes =  \alpha  \times  \beta  =  \frac{c}{a}

 \implies1 \times  \frac{7}{3}  =  \frac{7}{3}

 \implies \frac{7}{3}  =  \frac{7}{3}

Hence verified

Answered by Anonymous
15

Given Polynomial : 3x² -10x +7

We've to find relationship b/w zeroes and Coefficient of given quadratic Polynomial.

⠀⠀⠀⠀

☆ Let's find out zeroes of Given Polynomial :

⠀⠀⠀⠀

\begin{gathered}\qquad:\implies\sf 3x^2  -  10\:x  + 7 = 0\\\\\\ \qquad:\implies\sf 3x^2  -  3x  - 7x + 7 = 0\\\\\\ \qquad:\implies\sf 3x(x - 1)  - 7(x - 1) = 0\\\\\\ \qquad:\implies\sf (x - 1)(3x  -  7) = 0\\\\\\ \qquad:\implies{\underline{\boxed{\textsf{\red{x = 1\:\:or\:\:x = 7/3}}}}}\:\bigstar\\\\\\\end{gathered}

\therefore\:{\underline{\sf{Hence,\:The\:zeroes\:of\:Polynomial\:are\:{\pmb{1}}\:{\sf{\&}}\:{\bf{7/3}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

✇ Let's consider α and β be zeroes of Polynomial.

Here, In the given Polynomial 3x² -10x +7, {a = 3 , b = -10 & c = 7}.

⠀⠀⠀⠀

☆ Now, Let's verify the relationship between zeroes and Coefficient :

⠀⠀⠀

\begin{gathered}\bf{\dag}\:{\underline{\boxed{\bf{Sum\:of\:zeroes\:\purple{(\alpha + \beta)}\::}}}}\\\\\\\end{gathered}

\begin{gathered}\qquad\quad\dashrightarrow\sf \alpha + \beta = \dfrac{-b}{a}\\\\\\ \qquad\quad\dashrightarrow\sf \big(1\big) + \bigg(\dfrac{7}{3}\bigg) = \dfrac{10}{3}\\\\\\ \qquad\quad\dashrightarrow\sf \dfrac{3}{3}  + \dfrac{7}{3} = \dfrac{10}{3}\\\\\\ \qquad\quad\dashrightarrow{\boxed{\boxed{\sf{\pink{\dfrac{10}{3} =\dfrac{10}{3}}}}}}\\\\\\\end{gathered}

\begin{gathered}\bf{\dag}\:{\underline{\boxed{\bf{Product\:of\:zeroes\:\purple{(\alpha \beta)}\::}}}}\\\\\\\end{gathered}

\begin{gathered}\qquad\quad\dashrightarrow\sf \alpha \beta = \dfrac{c}{a}\\\\\\ \qquad\quad\dashrightarrow\sf \big(1\big) \bigg(\dfrac{7}{3}\bigg) = \dfrac{7}{3}\\\\\\ \qquad\quad\dashrightarrow{\boxed{\boxed{\sf{\pink{ \frac{7}{3}  =  \frac{7}{3} }}}}}\\\\\\\end{gathered}

Hence Verified !

Similar questions