Math, asked by vedghule, 9 months ago


Find the zeroes of 4root5x2 - 17x +3root5 and verify the relation between the zeroes and coefficients
of the polynomial.​

Answers

Answered by Anonymous
2

\large{\underline{\bf{\green{Given:-}}}}

✰ p(x) = 4√5x² - 17x +3√5

\large{\underline{\bf{\green{To\:Find:-}}}}

✰ we need to find the zeroes of the given polynomial.and also find the relationship between the coefficients and zeroes.

\huge{\underline{\bf{\red{Solution:-}}}}

\red{\underbrace{By\: using\: quadratic\: formula}}

\pink{ \bf \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a} }\\  \\

a = 45

b = -17

c = 35

Now,

,putting these values in the quadratic formula:-

 \sf \frac{ - ( - 17) \pm \sqrt{ { - 17}^{2}  - 4 \times 4 \sqrt{5}  \times 3 \sqrt{5} } }{2 \times 4 \sqrt{5} } \\  \\  : \implies   \sf \frac{17 \pm \sqrt{289  + ( - 16 \sqrt{5}) \times 3 \sqrt{5}  } }{8 \sqrt{5} } \\  \\  : \implies   \sf \frac{17 \pm \sqrt{289 - 240} }{8 \sqrt{5} } \\  \\: \implies   \sf \frac{17 \pm \sqrt{49} }{8 \sqrt{5} } \\  \\ : \implies   \sf \frac{17 \pm7}{8 \sqrt{5} }  \\  \\  : \implies   \sf\boxed{ \purple{ \bf{x =  \frac{24}{8 \sqrt{5}  }  =  \frac{3}{ \sqrt{5} } }}} \\  \\   : \implies   \sf \boxed{ \purple{ \bf{x =  \frac{10}{8 \sqrt{5} } =  \frac{5}{4 \sqrt{5} }  }}}

Now,

Relationship between the zeroes and coefficients:-

Let α = 3/√5

β = 5/4√5

α + β = -b/a

αβ = c/a

\underbrace{\bf{\:\:sum\:of\: zeroes\:\:}}

: \implies   \sf\frac{3}{\sqrt{5}}+\frac{5}{4\sqrt{5}}=\frac{17}{4\sqrt{5}}

: \implies   \sf\frac{12+5}{4\sqrt{5}}=\frac{17}{\sqrt{5}}

: \implies   \sf\frac{17}{4\sqrt{5}}=\frac{17}{4\sqrt{5}}

Now,

\underbrace{\bf{\:\:Product\:of\: zeroes\:\:}}

: \implies   \sf\frac{3}{\sqrt{5}}\times\frac{5}{4\sqrt{5}}=\frac{3\sqrt{5}}{4\sqrt{5}}

: \implies   \sf\frac{{\cancel{15}}}{{\cancel{20}}}=\frac{3}{4}

: \implies   \sf\frac{3}{4}=\frac{3}{4}

LHS = RHS .

Hence, Relationship is varified.

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
6

\bold\red{\underline{\underline{Answer:}}}

\bold{Roots \ are \frac{3}{\sqrt5} \ and \frac{\sqrt5}{4}}

\bold\orange{Given:}

\bold{The \ given \ polynomial \ is}

\bold{=>4\sqrt5x^{2}-17x+3\sqrt5}

\bold\pink{To \ find:}

\bold{=>Roots \ of \ the \ polynomial.}

\bold\blue{Explanation}

\bold{The \ given \ polynomial \ is}

\bold{=>4\sqrt5x^{2}-17x+3\sqrt5}

\bold{Here, \ a=4\sqrt5, \ b=-17 \ and \ c=3\sqrt5}

\bold{a×c=4\sqrt5×3\sqrt5}

\bold{\therefore{a×c=60}}

\bold{Middle \ term \ should \ be \ split \ such}

\bold{that, \ their \ multiplication \ should \ be \ 60}

\bold{and \ sum \ should \ be \ -17.}

\bold\green{\underline{\underline{Solution}}}

\bold{=>4\sqrt5x^{2}-17x+3\sqrt5}

\bold{=>4\sqrt5x^{2}-12x-5x+3\sqrt5}

\bold{=>4x(\sqrt5x-3)-\sqrt5(\sqrt5x-3)}

\bold{=>(\sqrt5x-3)(4x-\sqrt5)}

\bold{\therefore{x=\frac{3}{\sqrt5} \ or \frac{\sqrt5}{4}}}

\bold\purple{\therefore{Roots \ are \frac{3}{\sqrt5} \ and \frac{\sqrt5}{4}}}

\bold\green{\underline{\underline{Verification}}}

\bold{Let \ roots \ be \ \alpha \ and \ \beta \ be \ roots}

\bold{Sum \ of \ roots=\frac{-b}{a}}

\bold{Product \ of \ roots=\frac{c}{a}}

__________________________________

\bold{\alpha+\beta=\frac{3}{\sqrt5}+\frac{\sqrt5}{4}}

\bold{\alpha+\beta=\frac{12+5}{4\sqrt5}}

\bold{\therefore{\alpha+\beta=\frac{17}{4\sqrt5}...(1)}}

\bold{\frac{-b}{a}=\frac{-(-17)}{4\sqrt5}}

\bold{\therefore{\frac{-b}{a}=\frac{17}{4\sqrt5}...(2)}}

\bold{From \ (1) \ and \ (2)}

\bold{\alpha+\beta=\frac{-b}{a}}

\bold{\therefore{Sum \ of \ roots=\frac{-b}{a}}}

___________________________________

\bold{\alpha×\beta=\frac{3}{\sqrt5}× \frac{\sqrt5}{4}}

\bold{\therefore{\alpha×\beta=\frac{3}{4}...(3)}}

\bold{\frac{c}{a}=\frac{3\sqrt5}{4\sqrt5}}

\bold{\therefore{\frac{c}{a}=\frac{3}{4}...(4)}}

\bold{From \ (3) \ and \ (4)}

\bold{\alpha×\beta=\frac{c}{a}}

\bold{\therefore{Product \ of \ roots=\frac{c}{a}}}

\bold{}

Similar questions