Math, asked by gayatrivarmav, 5 months ago

find the Zeroes of 6x²-72-3 and verify the relation-
-shie between zeroes
and coefficients.​

Answers

Answered by TheProphet
3

S O L U T I O N : (Ques.error)

We have quadratic polynomial p(x) = 6x² - 7x - 3 & zeroes of the polynomial p(x) = 0

\underline{\tt{Using\:by\:factorization \:\:method\::}}

\mapsto\sf{6x^{2} - 7x - 3= 0}

\mapsto\sf{6x^{2} -9x + 2x - 3= 0}

\mapsto\sf{3x(2x-3) +1(2x -3) = 0}

\mapsto\sf{(2x-3) (3x + 1) = 0}

\mapsto\sf{2x - 3 = 0\:\:\:Or\:\:\:3x + 1 = 0}

\mapsto\sf{2x =3\:\:\:Or\:\:\:3x =-1}

\mapsto\sf{x =3/2\:\:\:Or\:\:\:x=-1/3}

∴ α = 3/2 & β = -1/3 are two zeroes of the polynomials .

As we know that quadratic polynomial compared with ax² + bx + c;

  • a = 6
  • b = -7
  • c = -3

Now,

\underline{\mathcal{SUM\:OF\:THE\:ZEROES\::}}

\longrightarrow\tt{\alpha + \beta  = \dfrac{-b}{a} =\bigg\lgroup\dfrac{Coefficient\:of\:x}{Coefficient\:of\:x^{2}} \bigg\rgroup }

\longrightarrow\tt{\dfrac{3}{2}  +\bigg(- \dfrac{1}{3} \bigg) = \dfrac{-(-7)}{6}}

\longrightarrow\tt{\dfrac{3}{2}  - \dfrac{1}{3}  = \dfrac{7}{6}}

\longrightarrow\tt{\dfrac{9-2}{6}  = \dfrac{7}{6}}

\longrightarrow\bf{\dfrac{7}{6}  = \dfrac{7}{6}}

\underline{\mathcal{PRODUCT\:OF\:THE\:ZEROES\::}}

\longrightarrow\tt{\alpha \times  \beta  = \dfrac{c}{a} =\bigg\lgroup\dfrac{Constant\:term}{Coefficient\:of\:x^{2}} \bigg\rgroup }

\longrightarrow\tt{\dfrac{3}{2} \times \bigg(- \dfrac{1}{3} \bigg) = \dfrac{-3}{6}}

\longrightarrow\bf{\dfrac{-3}{6} = \dfrac{-3}{6}}

Thus,

The relationship between zeroes & coefficient are verified .

Similar questions