Math, asked by kumarashwani5605, 9 months ago

find the zeroes of a quadratic polynomial 4x2-4x-3 and verify the relation between the zeroes and their cofficients​

Answers

Answered by Anonymous
119

\Large\underline\mathrm\red{Given}

Find the zeroes of a quadratic polynomial 4x² - 4x - 3 and verify the relation between the zeroes and their ccofficients

\Large\underline\mathrm\red{Solution}

  • 4x² - 4x - 3

Solve it by splitting middle term

➠ 4x² - 4x - 3

➠ 4x² - 6x + 2x - 3

➠ 2x(2x - 3) + 1(2x - 3)

➠ (2x + 1)(2x - 3)

Either

2x + 1 = 0

➠ 2x = - 1

➠ x = -1/2

Or

➠ 2x - 3 = 0

➠ 2x = 3

➠ x = 3/2

Hence, -1/2 and 3/2 are the zeros of the given polynomial

\Large\underline\mathrm\red{Verification}

\Large{\boxed{\bf{\blue{Sum\:of\:zeros}}}}

Add both the zeros

\sf \implies\dfrac{-1}{2}+\dfrac{3}{2}=1=\dfrac{-(-4)}{4}=\dfrac{-b}{a} \\ \\ \sf \dfrac{-(Coefficient\:of\:x)}{Coefficient\:of\:x^2} \\ \\ \sf \Large{\boxed{\bf{\blue{Product\:of\:zeros}}}}

Multiply both the zeros

\sf \implies\dfrac{-1}{2}\times\dfrac{3}{2}=\dfrac{-3}{4}=\dfrac{c}{a} \\ \\ \sf \dfrac{Constant\:term}{Coefficient\:of\:x^2}

Answered by sethrollins13
53

✯✯ QUESTION ✯✯

Find the zeroes of a quadratic polynomial 4x²-4x-3 and verify the relation between the zeroes and their cofficients..

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\implies\tt{{4x}^{2}-4x-3}

By Splitting Middle Term : -

\implies\tt{{4x}^{2}-(6x-2x)-3}

\implies\tt{{4x}^{2}-6x+2x-3}

\implies\tt{2x(2x-2)+1(2x-3)}

\implies\tt{(2x+1)(2x-3)}

  • x=-1/2
  • x=-1/2x = 3/2

So , -1/2 and 3/2 are the zeroes of polynomial 4x²-4x-3...

HERE : -

  • a = 4
  • b = -4
  • c = -3

Sum of Zeroes : -

\implies\tt{\alpha+\beta=\dfrac{-b}{a}}

\implies\tt{\dfrac{-1}{2}+\dfrac{3}{2}=\dfrac{-(-4)}{4}}

\implies\tt{\dfrac{-1+3}{2}=\dfrac{4}{4}}

\implies\tt{\cancel\dfrac{2}{2}=\cancel\dfrac{4}{4}}

\implies\tt{1=1}

\red\longmapsto\:\large\underline{\boxed{\bf\green{L.H.S}\orange{=}\purple{R.H.S}}}

Product of Zeroes : -

\implies\tt{\alpha\beta=\dfrac{c}{a}}

\implies\tt{\dfrac{-1}{2}\times\dfrac{3}{2}=\dfrac{-3}{4}}

\implies\tt{\dfrac{-3}{4}=\dfrac{-3}{4}}

\blue\longmapsto\:\large\underline{\boxed{\bf\pink{L.H.S}\orange{=}\red{R.H.S}}}

HENCE VERIFIED

Similar questions