Math, asked by naliniphyllei20, 1 month ago

Find the zeroes of each of
the following polynomial
and verify
Retionship between the
zeroes and their derfficients
a x² - 90+20​

Answers

Answered by barani7953
0

Step-by-step explanation:

their coefficients :

(i) f(x)=x

2

−2x−8

(ii) g(x)=4s

2

−4s+1

(iii) f(x)=x

2

−(

3

+1)x+

3

(iv) x

2

−3−7x

(v) p(x)=x

2

+2

2

x−6

(vi) q(x)=

3

x

2

+10x+7

3

(vii) g(x)=a(x

2

+1)−x(a

2

+1)

Medium

share

Share

Answer

Open in answr app

Open_in_app

ax

2

+bx+c=0⇒α+β=−

a

b

,αβ=

a

c

(i)

x

2

−2x−8=0

⇒a=1,b=−2,c=−8

x

2

−2x−8=0

(x−4)(x+2)=0

α=−2,β=4

α+β=−

a

b

→−2+4=−

1

−2

⇒2=2

αβ=

a

c

→(−2)(4)=

1

−8

⇒−8=−8

Hence the relationship between zeros and coefficients is verified.

(ii)

4s

2

−4s+1=0

⇒a=4,b=−4,c=1

4s

2

−4s+1=0

(2s−1)(2s−1)=0

α=

2

1

,β=

2

1

α+β=−

a

b

2

1

+

2

1

=−

4

−4

⇒1=1

αβ=

a

c

2

1

×

2

1

=

4

1

4

1

=

4

1

Hence the relationship between zeros and coefficients is verified.

(iii)

x

2

−(

3

+1)x+

3

=0

⇒a=1,b=−(

3

+1),c=

3

x

2

−(

3

+1)x+

3

=0

x=

2⋅1

−(−

3

−1)±

(−

3

−1)

2

−4⋅1

3

=

3

,1

α=

3

,β=1

α+β=−

a

b

3

+1=−

1

−(

3

+1)

⇒LHS=RHS

αβ=

a

c

→1×

3

=

1

3

⇒LHS=RHS

Hence the relationship between zeros and coefficients is verified.

(iv)

x

2

−7x−3=0

⇒a=1,b=−7,c=−3

x

2

−7x−3=0

x=

2⋅1

−(−7)±

(−7)

2

−4⋅1(−3)

:

2

61

α=

2

7+

61

,β=

2

7−

61

α+β=−

a

b

2

7+

61

+

2

7−

61

=−

1

−7

⇒LHS=RHS

αβ=

a

c

2

7+

61

×

2

7−

61

=

1

−3

⇒LHS=RHS

Hence the relationship between zeros and coefficients is verified.

(v)

x

2

+2

2

x−6=0

⇒a=1,b=2

2

,c=−6

x

2

+2

2

x−6=0

x=

2⋅1

−2

2

±

(2

2

)

2

−4⋅1(−6)

=

2

,−3

2

Similar questions