Math, asked by gg1909773, 2 months ago

Find the zeroes of each of the following polynomial and verify Retionship between the zeroes and their coefficients. x² - 9x+20​

Answers

Answered by soniyatharth62
0

Answer:

Step-by-step explanation:

x^2 - 5x - 4x + 20

x(x - 5) -4(x - 5)

(x-4)(x-5)

x = 4 , 5

Relationship between the zeroes and their coefficients.

quadratic equations are in form of

ax^2+bx+c

here; a = 1

b= -9

c=20

sum of the roots = -b/a

4 + 5                    =-(-9)/1

9                          = 9

product of the roots= c/a

4*5                            = 20/1

20                               =20

Answered by Anonymous
105

Answer:

{ \large{ \pmb{ \sf{★ Given... }}}}

  • x² - 9x + 20

{ \large{ \pmb{ \sf{★To \:  Find... }}}}

Zeroes and verifying relation between zeroes and their coefficients.

{ \large{ \pmb{ \sf{★ Solution... }}}}

{ \implies{ \sf{ {x}^{2}  - 9x + 20 = 0}}}

 \: { \implies{ \sf{ {x}^{2}  - 5x - 4x + 20 = 0}}}

 \: { \implies{ \sf{x(x - 5) - 4(x - 5) = 0}}}

 \: { \implies{ \sf{(x - 4)(x - 5) = 0}}}

 \: { \implies{ \sf{x = 4 \: or \: 5}}}

Verifying relation between zeroes and their coefficients,

Given Quadratic polynomial = x² - 9x + 20

Comparing with general form = ax² + bx + c

  • { \sf{a = 1}}
  •  \sf{b =  - 9}
  • { \sf{c = 20}}

From Zeroes (4, 5)

  •   \alpha  = 4
  •  \beta  = 5

{ \implies{ \sf{Sum  \:  of  \: Zeroes ( \alpha  +  \beta ) =  \frac{ - b}{a} }}} \\

 \: { \implies{ \sf{4 + 5 =  \frac{ - ( - 9)}{1}  }}} \\

{ \implies{ \sf{9 = 9}}}

 \:  \:  \:

{ \implies{ \sf{Product \:  of  \: zeroes (\alpha  \beta) =  \frac{c}{a}  }}} \\

{ \implies{4 \times 5 =  \frac{20}{1} }} \\

{ \implies{ \sf{20 = 20}}}

{ \large{ \pmb{ \sf{★Final  \: Answer... }}}}

Hence Verified ✔

Similar questions