Math, asked by divakarsharma7654, 9 months ago

find the zeroes of following quadratic polynomial and verify the relationship between
the zeroes and the cefficients
y2 + 3 \div 2 \sqrt{5y }  - 5

Answers

Answered by TrickYwriTer
9

Step-by-step explanation:

Given -

  • p(y) = y² + 3√5y/2 - 5

To Find -

  • Zeroes of quadratic polynomial
  • Verify the relationship between the zeroes and the coefficient.

Now,

→ y² + 3√5y/2 - 5 = 0

→ 2y² + 3√5y - 10/2 = 0

→ 2y² + 3√5y - 10 = 0

here,

a = 2

b = 3√5

c = -10

By using quadratic formula :-

  • x = -b ± √b² - 4ac/2a

→ -(35) ± √(35)² - 4×2×-10/2(2)

→ -3√5 ± √45 + 80/4

→ -3√5 ± √125/4

→ -3√5 ± 5√5/4

Zeroes are -

→ x = -3√5 + 5√5/4

→ 2√5/4

√5/2

And

→ x = -3√5 - 5√5/4

→ -8√5/4

-2√5

Hence,

The zeroes are 5/2 and -25.

Verification :-

  • α + β = -b/a

→ -2√5 + √5/2 = -(35)/2

→ -4√5 + √5/2 = -3√5/2

→ -3√5/2 = -3√5/2

LHS = RHS

And

  • αβ = c/a

→ -2√5 × √5/2 = -10/2

→ -5 = -5

LHS = RHS

Hence,

Verified..

It shows that our answer is absolutely correct.

Answered by silentlover45
0

{\huge{\underbrace{\overbrace{\red{Answer:-}}}}}

\implies √5/2

\implies -4√5

\large\underline\mathrm{Given:-}

  • p(y) = y² + 3√5y/2 - 5

\large\underline\mathrm{To \: find}

  • zeroes of quadratic polynomial.
  • verify the zeroes of the coefficient.

\large\underline\mathrm{Solution}

\implies y² + 3√5y/2 - 5 =0

\implies 2y² + 3√5y - 10/2 = 0

\implies 2y² + 3√5y - 10 = 0

\large\underline\mathrm{Thus,}

\implies a = 2

\implies b = 3√5

\implies c = -10

\large\underline\mathrm{By \: using \: formula \: of \: the \: quadratic \: polynomial \: .}

\implies -b +,- √b² - 4ac/2a

\implies -(3√5) +,- √(3√5)² - 4 × 2 × - 10/2 + 2)

\implies -3√5 +,- √45 + 80/4

\implies -3√5 +,- √125/4

\implies -3√5 +,- 5√5/4

\implies x = -3√5 + 5√5/4

\implies 2√5/4

\implies √5/2

\implies x = -3√5 - 5√5/4

\implies -8√5/4

\implies -4√5

\large\underline\mathrm{Hence,}

\large\underline\mathrm{The \: zeroes \: are \: √5/2 \: and -2√5 \: .}

\large\underline\mathrm{verification \: of \: quadratic \: polynomial \: :-}

\implies α + β = -b/a

\implies -2√5 + √5/2 = -(3√5)/2

\implies -4√5 + √5/2 = -(3√5)/2

\implies -3√5/2 = -3√5/2

\large\underline\mathrm{LHS \: = \: RHS}

\large\underline\mathrm{And}

\implies βα =c/a

\implies -2√5 × √5/2 = 10/2

\implies -5 = -5

\large\underline\mathrm{LHS \: = \: RHS}

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions