find the zeroes of following quadratic polynomial and verify the relationship between
the zeroes and the cefficients
Answers
Step-by-step explanation:
Given -
- p(y) = y² + 3√5y/2 - 5
To Find -
- Zeroes of quadratic polynomial
- Verify the relationship between the zeroes and the coefficient.
Now,
→ y² + 3√5y/2 - 5 = 0
→ 2y² + 3√5y - 10/2 = 0
→ 2y² + 3√5y - 10 = 0
here,
a = 2
b = 3√5
c = -10
By using quadratic formula :-
- x = -b ± √b² - 4ac/2a
→ -(3√5) ± √(3√5)² - 4×2×-10/2(2)
→ -3√5 ± √45 + 80/4
→ -3√5 ± √125/4
→ -3√5 ± 5√5/4
Zeroes are -
→ x = -3√5 + 5√5/4
→ 2√5/4
→ √5/2
And
→ x = -3√5 - 5√5/4
→ -8√5/4
→ -2√5
Hence,
The zeroes are √5/2 and -2√5.
Verification :-
- α + β = -b/a
→ -2√5 + √5/2 = -(3√5)/2
→ -4√5 + √5/2 = -3√5/2
→ -3√5/2 = -3√5/2
LHS = RHS
And
- αβ = c/a
→ -2√5 × √5/2 = -10/2
→ -5 = -5
LHS = RHS
Hence,
Verified..
It shows that our answer is absolutely correct.
√5/2
-4√5
- p(y) = y² + 3√5y/2 - 5
- zeroes of quadratic polynomial.
- verify the zeroes of the coefficient.
y² + 3√5y/2 - 5 =0
2y² + 3√5y - 10/2 = 0
2y² + 3√5y - 10 = 0
a = 2
b = 3√5
c = -10
-b +,- √b² - 4ac/2a
-(3√5) +,- √(3√5)² - 4 × 2 × - 10/2 + 2)
-3√5 +,- √45 + 80/4
-3√5 +,- √125/4
-3√5 +,- 5√5/4
x = -3√5 + 5√5/4
2√5/4
√5/2
x = -3√5 - 5√5/4
-8√5/4
-4√5
α + β = -b/a
-2√5 + √5/2 = -(3√5)/2
-4√5 + √5/2 = -(3√5)/2
-3√5/2 = -3√5/2
βα =c/a
-2√5 × √5/2 = 10/2
-5 = -5