Math, asked by Besharam5555, 1 month ago

Find the zeroes of following quadratic polynomials and verify the relationship between the zeroes and the co-effecients ` 4x^(2)-x-5​​

Answers

Answered by niranjsanthosh1503
1

Answer: zeroes are 5/4 and -1

Step-by-step explanation:

see the pic

Attachments:
Answered by misscuteangel
42

Given :

  • A quadratic polynomial 4x² - x - 5

To Find :

  • Zeroes of the polynomial and verify the relationship between the zeroes and the coefficients .

Solution :

 \longmapsto \tt \bf{{4x}^{2} \:  - x - 5 = 0 }

By Splitting Middle Term :

 \longmapsto \tt{{4x} ^{2}  - (5x  - 4x) + 5 = 0}

 \longmapsto \tt{{4x ^{2} - 5x + 4x + 5 = 0 }}

 \longmapsto \tt{{x (4x- 5) + 1(4x  - 5 )= 0 }}

 \longmapsto \tt{(4x - 5) \:  \: (x + 32) = 0}

x = 5/4x = -1

So , 5/4 and -1 are the zeroes of Quadratic Polynomial 4x²-x-5 .

Here :

  • a = 4b = -1c = -5

Sum of Zeroes :

 \longmapsto \tt {\alpha  +  \beta  =  \dfrac{ - b}{a} }

 \longmapsto \tt \dfrac{5}{4}  + ( - 1) =  \dfrac{ - 1}{4}

5/4 + (-1) = -(-1)/4

5 - 4 / 4 = 1/4

1 / 4 = 1/4

Product of Zeroes :

  • ab = c/a

  • 5/4 × (-1) = -5/4

  • -5/4 = -5/4

HENCE VERIFIED

____________________

Similar questions