Math, asked by ayaanjiandani, 10 months ago

Find the zeroes of p(x) 3x^2+13x-10 an verify the relationship between the zeroes and the coefficients. Show working as well.

Answers

Answered by uttara29
0

sum of zeroes= -b/a = -13/3

product of zeroes =c/a= -10/3

Answered by himanshujol2677
1

Answer:

Step-by-step explanation:

3x^{2} +13x-10=0

3x^{2} +15x-2x-10=0\\3x(x+5)-2(x+5)=0\\(3x-2)(x+5)=0\\x=\frac{2}{3}\\ or\\x=-5

sum of zeroes=\frac{-b}{a}\\

\alpha +\beta =\frac{-b}{a}\\\frac{2}{3} +(-5)=\frac{-13}{3} \\

take L.C.M.

\frac{2-15}{3} =\frac{-13}{3}\\\frac{-13}{3}= \frac{-13}{3}\\

product of zeroes=\frac{c}{a}

\alpha \beta =\frac{c}{a}\\\frac{2}{3}*(-5)=\frac{-10}{3}\\ \frac{-10}{3} =\frac{-10}{3}

hence zeroes are equal to their coefficients.

Similar questions