Find the zeroes of polynomial 2x²-3+5x and verify the relationship between the zeroes and coefficients.
Answers
The zeroes are 1 and 5/2 bro.....
Hope it helps you
Procedure
2x^2 -5x+2x+5x
x(2x-5)-1(2x-5)
Zeroes =1,5/2
Let f(x) = 2x^2 - 3 + 5x.
Zero of the polynomial is where f(x) = 0
= > 2x^2 + 5x - 3 = 0
= > 2x^2 - x + 6x - 3 = 0
= > x(2x - 1) + 3(2x - 1) = 0
= > (x + 3)(2x - 1) = 0
= > x = -3, 1/2.
So, α = -3, β = 1/2 are the zeroes of the polynomial.
---------------------------------------------------------------------------------------------------------------
Comparing 2x^2 + 5x - 3 with ax^2 + bx + c,
We get a = 2, b = 5, c = -3.
Verification:
(i)
Sum of zeroes = -b/a
α + β = -b/a
-3 + 1/2 = -5/2
-6 + 1/2 = -5/2
-5/2 = -5/2
----------------------------------------------------------------------------------------------------------------
(ii) Product of zeroes = c/a
αβ = c/a
-3 * (1/2) = -3/2
-3/2 = -3/2.
Hence if it proved.
Hope this helps!