Math, asked by upretikavita7, 10 months ago

find the zeroes of polynomial 3x square -7x +4 and verify the relation between zeros and cooficients​

Answers

Answered by Anonymous
6

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Zeroes \ of \ polynomial \ are \ 1 \ and \ \frac{4}{3}}

\sf\orange{Given:}

\sf{The \ given \ polynomial \ is}

\sf{\implies{3x^{2}-7x+4}}

\sf\pink{To \ find:}

\sf{Zeroes \ of \ polynomial.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ polynomial \ is}

\sf{\implies{3x^{2}-7x+4}}

\sf{\implies{3x^{2}-3x-4x+4}}

\sf{\implies{3x(x-1)-4(x-1)}}

\sf{\implies{(x-1)(3x-4)}}

\sf{\implies{x=1 \ or \ \frac{4}{3}}}

\sf\purple{\tt{\therefore{Zeroes \ of \ polynomial \ are \ 1 \ and \ \frac{4}{3}}}}

\sf\blue{Verification:}

\sf{The \ given \ polynomial \ is}

\sf{\implies{3x^{2}-7x+4}}

\sf{Here, \ a=3, \ b=-7 and \ c=4}

\sf{Let \ \alpha \ be \ 1 \ and \ \beta \ be \ \frac{4}{3}}

________________________________

\sf{Sum \ of \ zeroes=\frac{-b}{a}}

\sf{\implies{\alpha+\beta=1+\frac{4}{3}}}

\sf{\implies{\alpha+\beta=\frac{3+4}{3}}}

\sf{\implies{\alpha+\beta=\frac{7}{3}...(1)}}

\sf{\implies{\frac{-b}{a}=\frac{-(-7)}{3}}}

\sf{\implies{\frac{-b}{a}=\frac{7}{3}...(2)}}

\sf{...from \ (1) \ and \ (2)}

\sf{\implies{\alpha+\beta=\frac{-b}{a}}}

________________________________

\sf{Product \ of \ zeroes=\frac{c}{a}}

\sf{\implies{\alpha\beta=1(\frac{4}{3})}}

\sf{\implies{\alpha\beta=\frac{4}{3}...(3)}}

\sf{\implies{\frac{c}{a}=\frac{4}{3}...(4)}}

\sf{...from \ (3) \ and \ (4)}

\sf{\implies{\alpha\beta=\frac{c}{a}}}

\sf{Hence, \ verified.}

Answered by Anonymous
55

 \bold{\red{\underline{\underline{\green{Solution:}}}}}

 \tt{i) \:p(x) =  {3x}^{2}  - 7x + 4}

Now factorise it first

3x² - 7x + 4

\implies 3x² + (4 + 3) x + 4

\implies 3x² - 4x - 3x + 4

\implies x (3x - 4) - 1 (3x - 4)

\implies (x - 1) (3x - 4)

Now, x - 1 = 0 \implies x = 1

3x = 4 = 0 \implies x = \frac{4}{3}

Now, 1 and \large{\frac{4}{3}} are the two root of the polynomial

Let, 1 = \alpha + \beta = \Large{\frac{-b}{a}}

\implies 1 + \large{\frac{4}{3}} = \large{\frac{-(-7)}{3}}

\implies \large{\frac{3+4}{3}} = \large{\frac{7}{3}}

\implies \large{\frac{7}{3}} = \large{\frac{7}{3}} Proved

ii) \alpha \beta =\large{ \frac{c}{a}}

1×\large{\frac{4}{3}} = \large{\frac{4}{3}}

\implies \large{\frac{4}{3}} =\large{\frac{4}{3}} Proved

Similar questions