Math, asked by jawandhajot45, 10 months ago

find the zeroes of polynomial and verify the relationship between the zeroes and cofficient 5x^2-2√5x-3​

Answers

Answered by Anonymous
2

HERE IS YOUR ANSWER

p(x) = 5 {x}^{2}  - 2 \sqrt{5}  \: x - 3 \\ 5 {x}^{2}  - 2 \sqrt{5}  \: x - 3  = 0 \\ 5 {x}^{2}  - 3 \sqrt{5}  \: x +  \sqrt{5}  \: x - 3 = 0 \\  \sqrt{5}  \: x( \sqrt{5 \: x}  - 3) + 1( \sqrt{5 \: x}  - 3) = 0 \\( \sqrt{5 \: x}  - 3)( \sqrt{5 \: x + 1)}  = 0

( \sqrt{5 \: x}  - 3) = 0 \\  \\ x =  \frac{3}{ \sqrt{5} }

( \sqrt{5}  \: x + 1) = 0 \\  \\ x =  \frac{ - 1}{ \sqrt{5} }

Verifying relationship b/w zeroes and coefficients:

In P(x),

a = 5 \\ b =  -  2 \sqrt{5}  \\ c =  - 3

 \alpha  =  \frac{3}{ \sqrt{5} }  \\  \\  \beta  =  \frac{ - 1}{ \sqrt{5} }

 \alpha  +  \beta  =  \frac{ - b}{a}  \\  \\  \frac{3}{ \sqrt{5} }  +   \frac{ - 1}{ \sqrt{5} }  =  \frac{ - ( - 2 \sqrt{5}) }{5}  \\  \\  \frac{2}{ \sqrt{5} }  =  \frac{2 \sqrt{5} }{5}  \\  \\  \frac{2 \sqrt{5} }{5}  =  \frac{2 \sqrt{5} }{5}

 \alpha  \beta  =  \frac{c}{a}  \\  \\  \frac{3}{ \sqrt{5} }  \times   \frac{ - 1}{ \sqrt{5} }  =  \frac{ - 3}{5}  \\  \\  \frac{ - 3}{5 }  = \frac{ - 3}{ 5 } \:

Hence, verified.

ᴴᴼᴾᴱ ᴵᵀ ᴴᴱᴸᴾˢ ❤

fᎾᏞᏞᎾᎳ mᎬ

Similar questions