Math, asked by jashankarda2004, 8 months ago

find the zeroes of polynomial and verify the relationship between zeroes and coefficients 4x2 + 8x

Answers

Answered by akanksha3162
0

Answer:

4x2+8x

=2x(2x+4)

=2x=0; 2x+4=0

=x=0; x=-2

let alpha be 0 and beta be -2

alpha +beta = -b/a

= 0+(-2)= -8/4

-2=-2

Alpha x beta =c/a

= 0 x(-2) = 0/4

0=0

hence , verified the relationship between zeroes and its coefficient.

Answered by Anonymous
91

Given:-

  • A quadratic polynomial f(x) = 4x² + 8x

To Find:-

  • The zeroes of the polynomial and verify the relationship between the zeroes and coefficients.

Solution:-

  • We are given, f(x) = 4x² + 8x

\sf\:  \: \:  \:  \:  \:  \: \::  \implies4 {x}^{2}   + 8x = 0\\

 \sf \:  \: \:  \:  \:  \:  \: \:: \implies4x(x  + 2) = 0\\

\sf \:  \: \:  \:  \:  \:  \: \:: \implies 4x = 0 \:  \:  \: OR\:  \:  \: x  + 2= 0\\

\sf \pink{\:  \: \:  \:  \:  \:  \: \:: \implies x = 0 \:  \:  \: Or\:  \:  \: x  =  - 2}\\

\therefore\:\underline{\textsf{ The zeros  are \textbf{0 \: and \: -2 }}}.\\

  • Now, let us verify the relationship between the zeroes and coefficients.

  • We know, for a quadratic polynomial f(x) = ax² + bx + c.Where:-

  • Sum of zeroes = \sf \dfrac{-b}{a}
  • Product of zeroes = \sf \dfrac{c}{a}

  • In the given quadratic equation 4x² + 8x.

  • a = 4
  • b = 8
  • c = 0

\boxed{\pink{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\sf Sum \: of \: zeroes = 0 + (-2) = -2

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \dfrac{-b}{a} = \dfrac{ - 8}{4}  = -2

\boxed{\pink{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\sf Product \: of \: zeroes = 0 \times -2 = 0

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \dfrac{c}{a} =  \dfrac{0}{4}  = 0

  • Hence Verified..!!
Similar questions