Math, asked by mahourjanvi, 1 month ago

Find the zeroes of polynomial f(x) = x² + 2√2 - 6 and also verify the relation between zeroes and coefficient.​

Answers

Answered by diyaatandon
1

Step-by-step explanation:

Given, p(x) = x2 + 2√2x – 6

We put p(x) = 0

⇒ x2 + 2√2x – 6 = 0

⇒ x2 + 3√2x – √2x – 6 = 0

⇒ x(x + 3√2) – √2 (x + 3√2) = 0

⇒ (x – √2)(x + 3√2) = 0

This gives us 2 zeros, for x = √2 and x = -3√2

Hence, the zeros of the quadratic equation are √2 and -3√2.

Now, for verification

Sum of zeros = –coefficient of x/ coefficient of x^2

√2 + (-3√2) = (2√2)/1

-2√2 = -2√2

Product of roots = constant/coefficient of x^2

√2 x (-3√2) = (−6)/2√2

-3 x 2 = -6/1

-6 = -6

Therefore, the relationship between zeros and their coefficients is verified.

Answered by Yugant1913
8

 \underline \red{ \pmb{Given : }}

  • F(x) = x² + 2√2 - 6

 \underline \red{ \pmb{To \:  find :  }}

  • Find zeroes
  • Verify the relation between zeroes and coefficient

 \underline \green{ \pmb{Solution : -  }}

 \sf \:  \:  \:  \:  \:  \qquad \: f(x) =  {x}^{2}  + 2 \sqrt{2}  - 6

 \sf \: We  \: put \:  \red{ f(x) = 0}

 \longrightarrow \sf {x}^{2}  + 2 \sqrt{2}  - 6 = 0

 \longrightarrow \sf {x}^{2}  + 2 \sqrt{2x}  -  \sqrt{2x}  - 6 = 0

 \longrightarrow \sf x(x + 3 \sqrt{2} ) -  \sqrt{2} (x + 3 \sqrt{2} ) = 0

 \longrightarrow \sf(x -  \sqrt{2} )(x + 3 \sqrt{2} ) = 0

  \sf \: \pmb {This \:  gives  \: us \:  2  \: zeroes \:  \: , for}\:

 \qquad \sf \: x =  \sqrt{2}  \:  \:  \: and \:  \:  \: x - 3 \sqrt{2}

   \sf\orange{\pmb{Hence,  \: the  \: zeroes  \: of  \: the \:  quadratic  \: equation  \: are \:   \sqrt{2} \:  \: and \:  \:  - 3 \sqrt{2}  } }\:

 \tt \pmb{Now \:  for \:  verification, }

 \qquad \underline\red{ \boxed {Sum \:  of \:  zeros \:  =  \frac{ - coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }} } \\

 \longrightarrow \tt \sqrt{2}  + ( - 3 \sqrt{2} ) =  -  \frac{(2 \sqrt{2} )}{ { 2} }  \\

 \longrightarrow \:  \tt \:  - 2 \sqrt{2} =   - 2 \sqrt{2}

  \underline\red{ \boxed{\qquad \: Product \:  of  \: roots  =  \frac{constant}{coefficient \: of \:  {x}^{2} }} } \\

 \longrightarrow \tt \sqrt{2}  \times ( - 3 \sqrt{2} ) =  \frac{( - 6)}{2 \sqrt{2} }  \\

 \longrightarrow \tt - 3 \times 2 =  \frac{ - 6}{1}  \\

 \longrightarrow \tt - 6 =  - 6

Therefore, the relationship between zeroes and coefficient is verified

Similar questions