find the zeroes of quadratic polynomial 4√5xsquare -17x-3√5
Answers
EXPLANATION.
Zeroes of the quadratic equation,
⇒ F(x) = 4√5x² - 17x - 3√5.
As we know that.
Factorizes the equation into middle term split, we get.
⇒ 4√5x² - 17x - 3√5 = 0.
⇒ 4√5x² - 12x - 5x - 3√5 = 0.
⇒ 4x(√5x - 3) + √5(√5x - 3) = 0.
⇒ (4x + √5)(√5x - 3) = 0.
⇒ x = -√5/4 and x = 3/√5.
MORE INFORMATION.
Relation between Roots and coefficients.
(1) = (α - β) = √(α + β)² - 4αβ = ±√b² - 4ac/a = ±√D/a.
(2) = α² + β² = (a + β)² - 2αβ = b² - 2ac/a².
(3) = α² - β² = (α + β)√(α + β)² - 4αβ = -b√b² - 4ac/a² = ±√D/a.
(4) = α³ + β³ = (α + β)³ - 3αβ(α + β) = -b(b² - 3ac)/a³.
(5) = α³ - β³ = (α + β)³ + 3αβ(α - β) = √(α + β)² - 4αβ = (b² - ac)√b² - 4ac/a³.
Zeroes of the quadratic equation,
⇒ F(x) = 4√5x² - 17x - 3√5.
As we know that.
Factorizes the equation into middle term split, we get.
⇒ 4√5x² - 17x - 3√5 = 0.
⇒ 4√5x² - 12x - 5x - 3√5 = 0.
⇒ 4x(√5x - 3) + √5(√5x - 3) = 0.
⇒ (4x + √5)(√5x - 3) = 0.
⇒ x = -√5/4 and x = 3/√5.
MORE INFORMATION.
Relation between Roots and coefficients.
(1) = (α - β) = √(α + β)² - 4αβ = ±√b² - 4ac/a = ±√D/a.
(2) = α² + β² = (a + β)² - 2αβ = b² - 2ac/a².
(3) = α² - β² = (α + β)√(α + β)² - 4αβ = -b√b² - 4ac/a² = ±√D/a.
(4) = α³ + β³ = (α + β)³ - 3αβ(α + β) = -b(b² - 3ac)/a³.
(5) = α³ - β³ = (α + β)³ + 3αβ(α - β) = √(α + β)² - 4αβ = (b² - ac)√b² - 4ac/a³