Math, asked by ajj17224, 2 months ago

find the zeroes of quadratic polynomial 6x2 - x - 12 and verify the relationship between the zeroes and coefficients​

Answers

Answered by amansharma264
62

EXPLANATION.

Quadratic polynomial.

⇒ 6x² - x - 12.

As we know that,

Factorizes the equation into middle term splits, we get.

⇒ 6x² - 9x + 8x - 12 = 0.

⇒ 3x(2x - 3) + 4(2x - 3) = 0.

⇒ (3x + 4)(2x - 3) = 0.

⇒ x = -4/3  and  x = 3/2.

Sum of the zeroes.

⇒ -4/3 + 3/2.

⇒ - 8 + 9/6 = 1/6.

Products of the zeroes.

⇒ (-4/3) x (3/2).

⇒ - 12/6 = - 2.

6x² - x - 12 = 0.

As we know that,

Sum of the zeroes of the quadratic equation.

⇒ α + β = -b/a.

⇒ α + β = -(-1)/6 = 1/6.

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a.

⇒ αβ = (-12)/6 = - 2.

Hence verified.

                                                                                                                         

MORE INFORMATION.

Nature of the roots of the quadratic expression.

(1) = Real and unequal, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.

Answered by MяMαgıcıαη
125

----------------------------------------------

\underline{\pink{\dag}{\underline{\frak{Question}}\pink{\dag}}}

  • Find the zeroes of quadratic polynomial 6x² - x - 12 and verify the relationship between the zeroes and coefficients.

\underline{\pink{\dag}{\underline{\frak{\rm{S}\frak{tep\:by\:step\:explanation}}}\pink{\dag}}}

  • Finding zeroes of given quadratic polynomial :

\longrightarrow\qquad\sf 6x^2 - x - 12 = 0

  • Using middle splitting method :

\longrightarrow\qquad\sf 6x^2 - 9x + 8x - 12 = 0

\longrightarrow\qquad\sf 3x(2x - 3) + 4(2x - 3) = 0

\longrightarrow\qquad\sf (3x + 4)(2x - 3) = 0

\longrightarrow\qquad\sf 3x + 4 = 0\:,\:2x - 3 = 0

\longrightarrow\qquad\sf 3x = -4\:,\:2x = 3

\longrightarrow\qquad\bf{x = \red{\dfrac{-4}{3}}\:,\:x = \red{\dfrac{3}{2}}}

\small\red{\therefore}\:{\underline{\sf{Hence,\:zeroes\:(\alpha\:and\:\beta)\:=\:\bf{\frac{-4}{3}}\:\sf{and}\:\bf{\frac{3}{2}\:\sf{respectively.}}}}}

  • Verifying the relationship between the zeroes and coefficients :

  • Sum of zeroes (α + β) = -b/a
  • Product of zeroes (αβ) = c/a

\leadsto\quad\sf \alpha + \beta\:=\:\dfrac{-b}{a}\:,\:\alpha\beta\:=\:\dfrac{c}{a}

  • Values that we have :

  • α and β = -4/3 and 3/2
  • b = coefficient of x = 1
  • c = constant term = 12
  • a = coefficient of = 6

  • Putting all values :

\leadsto\quad\small\sf \dfrac{-4}{3} + \dfrac{3}{2}\:=\:\dfrac{-(-1)}{6}\:,\:\dfrac{-4}{3}\:\times\:\dfrac{3}{2}\:=\:\dfrac{-12}{6}

\leadsto\quad\small\sf \dfrac{-8 + 9}{6}\:=\:\dfrac{1}{6}\:,\:\dfrac{-\cancel{4}}{\cancel{3}}\:\times\:\dfrac{\cancel{3}}{\cancel{2}}\:=\:\dfrac{-\cancel{12}}{\cancel{6}}

\leadsto\quad\small{\bf{\red{\dfrac{1}{6}}\:=\:\red{\dfrac{1}{6}}\:,\:\red{-2}\:=\:\red{-2}}}

\quad\qquad\qquad\underline{\pink{\dag}{\underline{\frak{\rm{H}\frak{ence,\:Verified!}}}\pink{\dag}}}

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

\underline{\pink{\dag}{\underline{\frak{\rm{M}\frak{ore\:to\:know}}}\pink{\dag}}}

  • Sridhara Acharya's formula :

\qquad\red\bigstar\:{\small{\underline{\boxed{\bf{\green{x = \dfrac{-b\:\pm\:\sqrt{b^2 - 4ac}}{2a}}}}}}}

----------------------------------------------

Similar questions