Math, asked by hetvivadalia2452, 9 months ago

Find the zeroes of quadratic polynomial and verify the relationship between the zeroes and coefficients:-3x*2-2x-1

Answers

Answered by dkansagra
0

Answer:

hope you help this solution ☺️☺️☺️☺️☺️

Attachments:
Answered by silentlover45
12

\underline\mathfrak{Given:-}

  • \: \: \: \: \: \: \: p \: {(x)} \: \: \leadsto  \: \: {3x}^{2} \: - \: {2x} \: - \: {1}

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: Zeroes \: \: of \: \: polynomial.

  • \: \: \: \: \: Relationship \: \: between \: \: the \: \: zeroes \: \: and \: \: coefficients.

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: p \: {(x)} \: \: \leadsto  \: \: {3x}^{2} \: - \: {2x} \: - \: {1}

\: \: \: \: \: \leadsto {3x}^{2} \: - \: {2x} \: - \: {1}

\: \: \: \: \: \leadsto {3x}^{2} \: - \: {3x} \: + \: {x} \: - \: {1}

\: \: \: \: \: \leadsto {3x} \: {({x} \: - \: {1})} \: + \: {1} \: {({x} \: - \: {1})}

\: \: \: \: \: \leadsto {({3x} \: + \: {1})} \: \: {({x} \: - \: {1})}

\: \: \: \: \: \leadsto {x} \: \: = \: \: \dfrac{-1}{3} \: \: \: \: Or \: \: \: \: {x} \: \: = \: \: {1}

  • \: \: \: \: \: \underline{Hence, {x} \: \: = \: \: \dfrac{-1}{3} \: \: \: \: Or \: \: \: \: {x} \: \: = \: \: {1}}

\underline\mathfrak{Verification:-}

  • \: \: \: \: \: \: \: p \: {(x)} \: \: \leadsto  \: \: {3x}^{2} \: - \: {2x} \: - \: {1}

\: \: \: \: \: \leadsto {a} \: \: = \: \: {3}

\: \: \: \: \: \leadsto {b} \: \: = \: \: {-2}

\: \: \: \: \: \leadsto {c} \: \: = \: \: {-1}

  • \: \: \: \: \: \underline{Let \: \: \alpha \: \: and \: \: \beta \: \: are \: \: the \: \: zeroes \: \: of \: \: the \: \: given \: \: polynomial}

\: \: \: \: \: \leadsto {\alpha} \: \: = \: \: \dfrac{-1}{3}

\: \: \: \: \: \leadsto {\beta} \: \: = \: \: {1}

  • \: \: \: \: \: \underline{Sum \: \: of \: \: zeroes \: \: \frac{-b}{a}}

\: \: \: \: \: \leadsto \dfrac{-1}{3} \: + \: {1} \: \: = \: \: - \: \frac{(-2)}{3}

\: \: \: \: \: \leadsto \dfrac{{-1} \: + {3}}{3} \: \: = \: \: \dfrac{2}{3}

\: \: \: \: \: \leadsto \dfrac{2}{3} \: \: = \: \: \dfrac{2}{3}

  • \: \: \: \: \: \underline{product \: \: of \: \: zeroes \: \: \frac{c}{a}}

\: \: \: \: \: \leadsto \dfrac{-1}{3} \: \times \: {1} \: \: = \: \: \frac{-1}{3}

\: \: \: \: \: \leadsto \frac{-1}{3} \: \: = \: \: \frac{-1}{3}

  • \: \: \: \: \: \underline{Verified.}

__________________________________

Similar questions