Math, asked by suryamummy19, 9 months ago

Find the zeroes of quadratic polynomial h(t)=t^2-15

Answers

Answered by PRANEETHA
0

t^2-15= 0

t^2 = 15

t = √15

.the zeros are √15 , -√15Mark as a Brainlist answer

Answered by amitkumar44481
4

AnsWer :

t = √15 , -√15.

Solution :

When, h(t) = t² -15.

  • then, t²- 15 = 0.

Let try with Alzebric method,

 \tt\dashrightarrow  {t}^{2}  - 15 = 0.

 \tt\dashrightarrow  {t}^{2}  = 15

 \tt\dashrightarrow t =  \pm \sqrt{15} .

\rule{200}1

Let try with Quadratic formula,

We have equation, t²-15.

Compare with General Equation.

 \tt a {x}^{2}  + bx + c = 0. \:  \:  \:  \red{a \neq  0.}

  • a = 1.
  • b = 0.
  • c = -15.

 \tt x =   \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

Putting the value, which given above, We get.

 \tt\dashrightarrow t =  \frac{0 \pm \sqrt{ {(0)}^{2} - 4 \times 1 \times  - 15 } }{2 \times 1}

 \tt\dashrightarrow t =  \frac{ \sqrt{60} }{2}

\begin{array}{r | l} 2 & 60 \\ \cline{2-2} 3 & 30 \\ \cline{2-2} 5 & 10  \\ \cline{2-2} 2 &  2  \\ \cline{2-2}    &  1 \end{array}

 \tt\dashrightarrow t =  \frac{ \cancel{2} \sqrt{15} }{\cancel{2}}

 \tt\dashrightarrow t =  \pm \sqrt{15}.

Therefore, the value of the equation be √15 and -√15.

Similar questions