Math, asked by tanvikadam7668, 9 months ago

Find the zeroes of quadratic polynomial h(t) =t2 —3 and prove the eelation between the zeroes and the coefficients.

Answers

Answered by amitkumar44481
5

SolutioN :

We have,

 \tt \dagger \:  \:  \:  \:  \:  h(t) = {t}^{2}  - 3.

☛ Condition :

  • t Zero of h( t ) = t² - 3.

 \tt : \implies  {t}^{2}  - 3 = 0.

 \tt : \implies  {t}^{2}  = 3.

 \tt : \implies  t   =  \pm \sqrt{ 3}.

\rule{200}3

Let's try with Other method :

 \tt \dagger \:  \:  \:  \:  \:  \fbox{ x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }

Where as,

  • a = 1.
  • b = 0.
  • c = - 3.

 \tt  :\implies x =  \dfrac{ 0\pm \sqrt{ 0 - 4 \times 1 \times  - 3 } }{2}

 \tt  :\implies x =  \dfrac{ \pm \sqrt{ 12} }{2}

 \tt  :\implies x = \dfrac{2 \pm \sqrt{ 3} }{2}

 \tt  :\implies x =   \pm \sqrt{3} .

Let's, Zero be

  • α = √3.
  • β = - √3.

✎ Sum of Zeros.

→ α + β = √3 - √3.

→ - b / a = 0.

→ 0 = 0.

\rule{90}1

✎ Product Of Zero.

→ α * β = √3 * - √3.

→ α * β = - 3.

→ c / a = - 3.

→ - 3 = - 3.

Hence Verify

Similar questions