Math, asked by ddeviganesh, 9 months ago

find the zeroes of quadratic polynomial y2 +4 root 3y -15 ​

Answers

Answered by MяƖиνιѕιвʟє
11

\bold{\huge{\fbox{\color{Red}{Solution}}}}

  =  > {y}^{2}  + 4 \sqrt{3} y - 15 = 0 \\  =  >  {y}^{2}  + 5 \sqrt{3} y -  \sqrt{3} y - 15 = 0 \\  =  > y(y + 5 \sqrt{3} ) -  \sqrt{3} (y + 5 \sqrt{3)} = 0  \\  =  > (y -  \sqrt{3} )(y + 5 \sqrt{3} ) = 0 \\  =  > y =  \sqrt{3} or \: y =  - 5 \sqrt{3}

Answered by Anonymous
21

\huge{\underline{\underline{\mathtt{\purple{Question}}}}}

  • find the zeros of quadratic polynomial

y2 +4√3y -15

\huge{\underline{\underline{\mathtt{\purple{Solution}}}}}

We need to factorise to find out the zeros of this quadratic polynomial

Solving this factorise by splitting middle term

Hence,

\large\implies\sf y^2+4\sqrt{3y}-15=0

\large\implies\sf y^2+5\sqrt{3y}-\sqrt{5y}-15=0

\large\implies\sf y(y+5\sqrt{3y})-\sqrt{3}(y+5\sqrt{3y})=0

\large\implies\sf (y+5\sqrt{3y})(y-\sqrt{3})=0

Either

y = √3

or

y = -5√3

√3 and -5√3 are the zeros of quadratic polynomial.

\huge{\underline{\underline{\mathtt{\purple{Verification}}}}}

We observe that, sum of its zeros

= -5√3 + √3 = √3(-5+1)= -4√3

= \sf \large\frac{Coefficient\:of\:y}{Coefficient\:of\:y^2}

Now, Product of its Zeros

= -5√3 × √3 = -5 × 3 = -15

= \sf \large\frac{Constant\:term}{Coefficient\:of\:y^2}

Similar questions