Math, asked by deepagosain02, 1 year ago

Find the zeroes of root 3x^2 + 10x +7 root 3

Answers

Answered by Anonymous
4
\mathfrak{\huge{Hi !}}

\sf{\underline{Polynomial}}\tt{= 3x^{2} + 10x + 7 \sqrt{3}}

\mathfrak{Quadratic\:Formula} \tt{\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}}\\

=》 \tt{\frac{-10 \pm \sqrt{100 - 84\sqrt{3}}}{6}}\\

\underline{\sf{Thus, \:this\:polynomial\:has\:no\:real\:roots.}}

\tt{\underline{Zeroes}} = \tt{ \frac{ -10 \pm \sqrt{100-84 \sqrt{3}}}{6}}\\
Answered by silentlover45
6

 Given:-

  •  p \: (x) \: \: = \: \: \sqrt{{3x}^{2}} \: + \: {10x} \: + \: 7\sqrt{3}

 To \: \: Find:-

  •  p \: (x) \: \: = \: \: \sqrt{{3x}^{2}} \: + \: {10x} \: + \: 7\sqrt{3}

⇢  \sqrt{{3x}^{2}} \: + \: {10x} \: + \: 7\sqrt{3}

⇢  \sqrt{{3x}^{2}} \: + \: {3x} \: + \: {7x} + \: 7\sqrt{3}

⇢ \sqrt{3x} \: (x \: + \: \sqrt{3}) \: + \: {7} \: (x \: + \: \sqrt{3})

⇢ x \: \: = \: \: \frac{-7}{\sqrt{3}} \: \: \: or \: \: \: x \: \: = \: \: - \: \sqrt{3}

 Verification:-

 p \: (x) \: \: ⇢ \: \: \sqrt{{3x}^{2}} \: + \: {10x} \: + \: 7\sqrt{3}

 \: \: \: \: \:  a \: \: ⇢ \: \: \sqrt{3}

 \: \: \: \: \: b \: \: ⇢ \: \: 10

 \: \: \: \: \: c \: \: ⇢ \: \: 7\sqrt{3}

 Let \: \: α \: \: and \: \: β \: \: are \: \: the \: \: zeroes \: \: of \: \: the \: \: given \: \: polynomial.

 Let \: \: α \: \: = \: \: \frac{-7}{\sqrt{3}} \: \: and \: \: β \: \: = \: \: - \: \sqrt{3}

  •  Sum \: \: of \: \: zeroes \: \: = \: \: \frac{- \: b}{a}

⇢ \frac{-7}{\sqrt{3}} \: \: + \: \: ( \: \: - \: \sqrt{3}) \: \: = \: \: \frac{- \: 10}{\sqrt{3}}

⇢ \frac{-7 \: - \: 3}{\sqrt{3}} \: \: = \: \: \frac{- \: 10}{\sqrt{3}}

⇢ \frac{- \: 10}{\sqrt{3}} \: \: = \: \: \frac{- \: 10}{\sqrt{3}}

  •  Product \: \: of \: \: zeroes \: \: = \: \: \frac{- \: c}{a}

⇢ \frac{-7 \: - \: 3}{\sqrt{3}} \: × \: ( \: \: - \: \sqrt{3}) \: \: = \: \: \frac{7{\sqrt{3}}}{\sqrt{3}}

⇢  \frac{7{\sqrt{3}}}{\sqrt{3}} \: \: = \: \: \frac{7{\sqrt{3}}}{\sqrt{3}}

⇢ 7 \: \: = \: \: 7

 \: \: \: \: \: \: \: \: \: \: L.H.S \: \: = \: \: R.H.S

 Hence \: \: verified.

______________________________________

Similar questions