Math, asked by manishabadadhe, 10 months ago

find the zeroes of the following polynomial and verify the realtionship between the zeroes and the coefficients 1) x2-11x+30​

Answers

Answered by anjalica62
3

Answer:

Step-by-step explanation:

We first find the roots of the above quadratic equation: by splitting the middle term:

x^2-11x+30=0\\\\x-6x-5x+30=0\\\\x(x-6)-5(x-6)=0\\\\(x-5)(x-6)=0\\\\x=5, 6\\

Let α = -5 and β = 6

Now, we will verify the relationship between zeroes and coefficient of polynomial:

\alpha +\beta =\dfrac{-b}{a}\\=\dfrac{-11}{1}\\\\=-11\\

Similarly,

\alpha\beta  =\dfrac{c}{a}\\\\5\times 6=\dfrac{30}{1}\\\\30=30

Hope this helps...

Answered by silentlover45
7

\underline\mathfrak{Given:-}

  • x² - 11x + 30

\underline\mathfrak{To \: \: Find:-}

  • Find the zeroes of the following polynomial and verify the realtionship between the zeroes and the coefficients ......?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: P \: {(x)} \: \: = \: \: {x}^{2} \: - \: {11x} \: + \: {30}

\: \: \: \: \: \leadsto \: \: {x}^{2} \: - \: {11x} \: + \: {30} \: \: = \: \: {0}

\: \: \: \: \: \leadsto \: \: {x}^{2} \: - \: {6x} \: - \: {5x} \: + \: {30} \: \: = \: \: {0}

\: \: \: \: \: \leadsto \: \: {x} \: {({x} \: - \: {6})} \: - \: {({x} \: - \: {6})}

\: \: \: \: \: \leadsto \: \: {({x} \: -  \: {5})} \: \: \: {({x} \: - \: {6})}

\: \: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: {5} \: \: \: and \: \: \: {x} \: \: = \: \: {6}

\: \: \: \: \: \: \: \: \: {\alpha} \: \: = \: \: {5} \: \: \: and \: \: \: {\beta} \: \: = \: \: {6}

\underline\mathfrak{Verification:-}

x² - 11x + 30

  • a = 1
  • b = -11
  • c = 30

\: \: \: \: \: \therefore {Sum \: \: of \: \: zeroes} \: \: = \: \: \frac{ \: - \: coefficient \: \: of \: \: x}{coefficient \: \: of \: \: {x}^{2}}

\: \: \: \: \: \leadsto \: \: {\alpha} \: + \: {\beta}  \: \: = \: \: \frac{-b}{a}

\: \: \: \: \: \leadsto \: \: {5} \: + \: {6}  \: \: = \: \: - \: \frac{(-11)}{1}

\: \: \: \: \: \leadsto \: \: {11}  \: \: = \: \: {11}

\: \: \: \: \: \therefore {Product \: \: of \: \: zeroes} \: \: = \: \: \frac{constant \: \: term}{coefficient \: \: of \: \: {x}^{2}}

\: \: \: \: \: \leadsto \: \: {\alpha} \: {\beta}  \: \: = \: \: \frac{c}{a}

\: \: \: \: \: \leadsto \: \: {5} \: \times \: {6}  \: \: = \: \: {\frac{30}{1}}

\: \: \: \: \: \leadsto \: \: {30} \: \: = \: \: {30}

Verified.

Similar questions