Math, asked by bsaikumar2005, 2 months ago

Find the zeroes of the following polynomial and verify the relationship between the zeroes and their
coefficients. t²-1​

Answers

Answered by majhisarita83
2

Answer:

Zeroes are 0 and.

Step-by-step explanation:

Given: Quadratic Polynomial , 25x² + 5x.

To find: Zeroes of Polynomial and Verify the relation between zeroes and coefficient.

first relation is sum of zeroes/roots =

LHS = α + β =

Step-by-step explanation:

Drop A Thank Pls

Answered by Anonymous
8

⠀⠀⠀⠀⠀⠀⠀⠀⠀☆⠀G I V E NP O L Y N O M I A L : t² - 1

⠀⠀⠀》⠀Finding out zeroes of Polynomial :

\qquad \dashrightarrow \sf t^2 \:\:\: -\:\:1 \:\:=\:\:0\:\\\\

As , We know that ,

\qquad \dag\:\:\bigg\lgroup \sf{\:Algebraic \:Indentity \:\:: a^2 - b^2 \:=\:(a + b ) ( a - b ) }\bigg\rgroup \\\\

\qquad \dashrightarrow \sf \:\:(\:t\;+\:1\:)\:(\:t\:-\:1\:) \:\:=\:\:0\:\\\\\qquad \dashrightarrow \sf x \:\:=\:\:1\:\:\:or\:\:x\:\:=\:\:-1\:\:  \\\\\qquad \dashrightarrow \:\:\underline {\boxed{\purple {\pmb{\frak{\:\:x \:\:=\:\:\:\:1\:\:\;or\:\:\:-1\:\:}}}}}\\\\

\qquad \therefore \:\:\underline {\sf\:Hence \:,\:The \:zeroes \:of \:Polynomial \:\:are \:\:\bf 1 \:\sf and \: \bf \:-1\:\sf.}\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀¤⠀Verifying relationship between zeroes and Cofficients :

\qquad \underline {\boxed {\pmb{\bf { \:\maltese \:\:Sum\:\:of\:zeroes \:\purple { \:(\alpha \:+\:\beta \:)\:\:}\::}}}}\\\\

 \dashrightarrow \sf \bigg( \:\:\alpha \:+\beta \:\bigg) \:\:=\:\:\dfrac{-(Cofficient \:of\:x\:)}{Cofficient \:of\:x^2\:}\:\\\\ \dashrightarrow \sf \bigg( \:1\:\:\bigg) \:+\bigg(\:-1` \:\bigg) \:\:=\:\:\dfrac{-\:(1)\:}{\:0\:}\:\\\\\dashrightarrow \sf  \:1\:\:\:-1` \: \:\:=\:\:\dfrac{-\:1\:}{\:0\:}\:\\\\\dashrightarrow \sf 0 \:\:=\:\:\:0\:\:\\\\ \dashrightarrow \:\:\underline {\boxed{\purple {\pmb{\frak{\:\:\:\:0\:=\:\:\:0\:\:}}}}}\\\\

⠀⠀⠀⠀⠀AND ,

\qquad \underline {\boxed {\pmb{\bf { \:\maltese \:\:Product \:\:of\:zeroes \:\purple { \:(\alpha \:\:\beta \:)\:\:}\::}}}}\\\\

 \dashrightarrow \sf \bigg( \:\:\alpha \:\beta \:\bigg) \:\:=\:\:\dfrac{\:Constant\:Term\:}{Cofficient \:of\:x^2\:}\:\\\\\dashrightarrow \sf \bigg( \:1\:\:\bigg) \:\bigg(\:-1 \:\bigg) \:\:=\:\:\dfrac{-1}{\:1\:}\:\\\\ \dashrightarrow \sf  \:1\:\:\times \:\bigg(\:-1\:\bigg) \:\:=\:\:-1\:\\\\ \dashrightarrow \sf  \: \:-1 \:\:=\:\:-1\:\\\\ \dashrightarrow \:\:\underline {\boxed{\purple {\pmb{\frak{\:\:\:\:-1\:=\:\:\:-1\:\:}}}}}\\\\

⠀⠀⠀⠀⠀\therefore {\underline {\pmb{\bf{ Hence, \:Verified \:}}}}\\\\

Similar questions