Math, asked by priyamani17876, 1 month ago

find the zeroes of the following polynomial and verify the relationship between the zeroes and the coefficient 4s2-4s+1​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given quadratic polynomial is

\rm :\longmapsto\:f(s) =  {4s}^{2} - 4s + 1

On splitting the middle terms, we get

\rm :\longmapsto\:f(s) =  {4s}^{2} - 2s - 2s + 1

\rm :\longmapsto\:f(s) =  2s(2s - 1) - 1(2s - 1)

\rm :\longmapsto\:f(s) =  (2s - 1)(2s - 1)

So,

\rm \implies\:zeroes \: of \: f(s) = \dfrac{1}{2} , \: \dfrac{1}{2}

Let assume that,

\rm \implies\: \alpha  = \dfrac{1}{2} \:and \:  \beta  =  \dfrac{1}{2}

So,

 \red{\boxed{ \tt{ \: \rm :\longmapsto\: \alpha  +  \beta  = \dfrac{1}{2}  + \dfrac{1}{2}  = 1}}}

and

\boxed{ \tt{ \:  \red{\rm :\longmapsto\: \alpha \beta  = \dfrac{1}{2} \times  \dfrac{1}{2}  = \dfrac{1}{4}}}}

Now, Verification

Given polynomial is

\rm :\longmapsto\:f(s) =  {4s}^{2} - 4s + 1

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}} =  \frac{4}{4} = 1 }}

and

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}} =  \frac{1}{4} }}

Hence, We concluded that,

\boxed{\red{\sf  \alpha  \beta =\frac{Constant}{coefficient\ of\ x^{2}}}}

and

\boxed{\red{\sf  \alpha  +  \beta =\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

Know to More :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta   +  \beta \gamma   +  \gamma  \alpha  = \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Answered by XxitsmrseenuxX
1

Answer:

\large\underline{\sf{Solution-}}

Given quadratic polynomial is

\rm :\longmapsto\:f(s) =  {4s}^{2} - 4s + 1

On splitting the middle terms, we get

\rm :\longmapsto\:f(s) =  {4s}^{2} - 2s - 2s + 1

\rm :\longmapsto\:f(s) =  2s(2s - 1) - 1(2s - 1)

\rm :\longmapsto\:f(s) =  (2s - 1)(2s - 1)

So,

\rm \implies\:zeroes \: of \: f(s) = \dfrac{1}{2} , \: \dfrac{1}{2}

Let assume that,

\rm \implies\: \alpha  = \dfrac{1}{2} \:and \:  \beta  =  \dfrac{1}{2}

So,

 \red{\boxed{ \tt{ \: \rm :\longmapsto\: \alpha  +  \beta  = \dfrac{1}{2}  + \dfrac{1}{2}  = 1}}}

and

\boxed{ \tt{ \:  \red{\rm :\longmapsto\: \alpha \beta  = \dfrac{1}{2} \times  \dfrac{1}{2}  = \dfrac{1}{4}}}}

Now, Verification

Given polynomial is

\rm :\longmapsto\:f(s) =  {4s}^{2} - 4s + 1

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}} =  \frac{4}{4} = 1 }}

and

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}} =  \frac{1}{4} }}

Hence, We concluded that,

\boxed{\red{\sf  \alpha  \beta =\frac{Constant}{coefficient\ of\ x^{2}}}}

and

\boxed{\red{\sf  \alpha  +  \beta =\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

Know to More :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta   +  \beta \gamma   +  \gamma  \alpha  = \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions