Math, asked by eshwarieshwari537, 2 months ago

Find the zeroes of the following polynomials by factorization

method and verify the relations between the zeroes and the coefficients of the

polynomials
2. 3x2 + 4x – 4​

Answers

Answered by Anonymous
35

Answer:

Given :-

  • 3x² + 4x - 4

To Find :-

  • What is the zeroes and verify the relationship between the zeroes and co-efficient.

Solution :-

Given equation :

\mapsto \sf\bold{3x^2 + 4x - 4}

\implies \sf 3x^2 + 4x - 4 =\: 0

\implies \sf 3x^2 + (6 - 2)x - 4 =\: 0

\implies \sf 3x^2 + 6x - 2x - 4 =\: 0

\implies \sf 3x(x + 2) - 2(x + 2) =\: 0

\implies \sf (3x - 2) (x + 2) =\: 0

\implies \sf (3x - 2) =\: 0

\implies \sf 3x - 2 =\: 0

\implies \sf 3x =\: 2

\implies \sf\bold{\purple{x =\: \dfrac{2}{3}}}

\implies \sf (x + 2) =\: 0

\implies \sf\bold{\purple{x =\: - 2}}

\therefore The zeroes of the polynomial is 2/3 and - 2.

Hence, we get :

  • \sf \alpha =\: \dfrac{2}{3}

  • \sf \beta =\: - 2

\rule{150}{2}

VERIFY THE RELATIONSHIP BETWEEN THE ZEROES AND CO-EFFICIENT :-

\bigstar \: \: \sf\bold{\green{Sum\: of\: two\: roots\: :-}}\\

As we know that :

\clubsuit Sum of roots Formula :

\longmapsto \sf\boxed{\bold{\pink{Sum\: of\: roots\: (\alpha + \beta) =\: \dfrac{- b}{a}}}}\\

So, given equation :

\mapsto \sf\bold{3x^2 + 4x - 4}

where,

  • a = 3
  • b = 4
  • c = - 4

According to the question by using the formula we get,

\longrightarrow \sf \alpha + \beta =\: \dfrac{- b}{a}

\longrightarrow \sf \dfrac{2}{3} + (- 2) =\: \dfrac{- 4}{3}

\longrightarrow \sf \dfrac{2}{3} - 2 =\: \dfrac{- 4}{3}

\longrightarrow \sf \dfrac{2 - 6}{3} =\: \dfrac{- 4}{3}

\longrightarrow \sf\bold{\red{ \dfrac{- 4}{3} =\: \dfrac{- 4}{3}}}

Hence, Verified.

Again,

\bigstar\: \: \: \sf\bold{\green{Product\: of\: two\: roots\: :-}}\\

As we know that :

\longmapsto \sf\boxed{\bold{\pink{Product\: of\: roots\: (\alpha\beta) =\: \dfrac{c}{a}}}}\\

So, given equation :

\mapsto \sf\bold{3x^2 + 4x - 4}

where,

  • a = 3
  • b = 4
  • c = - 4

According to the question by using the formula we get,

\longrightarrow \sf \alpha\beta =\: \dfrac{c}{a}

\longrightarrow \sf \dfrac{2}{3} \times (- 2) =\: \dfrac{- 4}{3}

\longrightarrow \sf \bold{\red{\dfrac{- 4}{3} =\: \dfrac{- 4}{3}}}

Hence, Verified.


MystícPhoeníx: Awesome !
Similar questions