Math, asked by nithwik4294, 11 months ago

Find the zeroes of the following quadratic polynomial and verify the relationship between the zeros and the coefficient x²+x-2

Answers

Answered by isher200
4

Answer:

hello ur answer is here......

Step-by-step explanation:

hope u like explanation

Attachments:
Answered by Anonymous
11

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

The quadratic polynomial x² + x - 2.

\bf{\red{\underline{\bf{To\:find\::}}}}

The zeroes and verify the relationship between the zeroes and the coefficient.

\bf{\red{\underline{\bf{Explanation\::}}}}

We have p(x) = x² + x - 2

Zero of the polynomial p(x) = 0

So;

\longrightarrow\sf{x^{2} +x-2=0}\\\\\longrightarrow\sf{x^{2} +2x-x-2=0}\\\\\longrightarrow\sf{x(x+2)-1(x+2)=0}\\\\\longrightarrow\sf{(x+2)(x-1)=0}\\\\\longrightarrow\sf{x+2=0\:\:\:Or\:\:\:x-1=0}\\\\\longrightarrow\sf{\pink{x=-2\:\:\:Or\:\:\:x=1}}

∴ The α = -2 and β = 1 are the zeroes of the polynomial.  

As the given quadratic polynomial as we compared with ax² + bx + c

  • a = 1
  • b = 1
  • c = -2

Now;

\star\:{\green{\underline{\boldsymbol{Sum\:of\:the\:zeroes\::}}}}}

\longrightarrow\sf{\alpha +\beta =\dfrac{-b}{a} =\dfrac{Coefficient\:of\:x }{Coefficient\:of\:x^{2} }} \\\\\\\longrightarrow\sf{-2+1=\dfrac{-1}{1} }\\\\\\\longrightarrow\sf{\pink{-1=-1}}

\star\:{\green{\underline{\boldsymbol{Product\:of\:the\:zeroes\::}}}}}

\longrightarrow\sf{\alpha \times \beta =\dfrac{c}{a} =\dfrac{Constant\:term }{Coefficient\:of\:x^{2} }} \\\\\\\longrightarrow\sf{-2\times 1=\dfrac{-2}{1} }\\\\\\\longrightarrow\sf{\pink{-2=-2}}

Thus;

Relationship between zeroes and coefficient is verified .

Similar questions