Math, asked by shondi2216, 10 months ago

Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and coefficients of xsquare-9​

Answers

Answered by hermion3
2

Step-by-step explanation:

x^2-9=0

x^2=9

x=root 9

x=3, -3

verifying relationships

a+b=3+(-3)

a+b=0

a+b=-b/a

a+b=0/1=)0

a×b=3×(-3)=)-9

a×b=c/a=)-9/1=-9

hence verified

Answered by sethrollins13
8

✯✯ QUESTION ✯✯

Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and coefficients of x²-9..

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\longrightarrow{{x}^{2}-9}

Using Identity : -

\longrightarrow{{a}^{2}-{b}^{2}=(a+b)(a-b)}

\longrightarrow{({x}^{2}+(-9)({x}^{2}-(-9)}

\longrightarrow{({x}^{2}-9)({x}^{2}+9)}

Now ,

\longrightarrow{{x}^{2}-9=0}

\longrightarrow{{x}^{2}=\sqrt{9}}

\red\longmapsto\:\large\underline{\boxed{\bf\green{x}\orange{=}\purple{3}}}

\longrightarrow{{x}^{2}+9=0}

\longrightarrow{{x}^{2}=\sqrt[-]{9}}

\red\longmapsto\:\large\underline{\boxed{\bf\orange{x}\green{=}\blue{-3}}}

So , 3 and -3 are the zeroes of polynomials x²-9..

Now ,

Sum of Zeroes : -

\longrightarrow{\alpha+\beta=\dfrac{-b}{a}}

\longrightarrow{3+(-3)=\dfrac{-(-0)}{1}}

\longrightarrow{0=0}

\red\longmapsto\:\large\underline{\boxed{\bf\pink{L.H.S}\blue{=}\green{R.H.S}}}

Product of Zeroes : -

\longrightarrow{\alpha\beta=\dfrac{c}{a}}

\longrightarrow{3\times{-3}=\dfrac{-9}{1}}

\longrightarrow{-9=-9}

\pink\longmapsto\:\large\underline{\boxed{\bf\purple{L.H.S}\green{=}\red{R.H.S}}}

Similar questions