Math, asked by nahla12, 10 months ago

Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and their coefficient ​

Attachments:

Answers

Answered by AayushSharma082
6

Step-by-step explanation:

here is the solution my friend

Hope it helps!!!

Attachments:
Answered by Anonymous
27

 \large\bf\underline{Question:-}

find the zeroes of quadratic polynomial p(x) 2x²- 7 and verify the relationship between the zeroes and their coefficient .

━━━━━━━━━━━━━━━━━

 \large\bf\underline{Given:-}

  • p(x) = 2x² - 7

 \large\bf\underline {To \: find:-}

  • zeroes of the given polynomial.

  • relationship between the zeroes and coefficients.

 \huge\bf\underline{Solution:-}

p(x) = 2x² - 7

 \dashrightarrow \rm \:  {2x}^{2}  - 7 = 0 \\  \\ \dashrightarrow \rm \: 2 {x}^{2}  = 7 \\  \\ \dashrightarrow \rm \:  {x}^{2}  =  \frac{7}{2}  \\  \\ \dashrightarrow \rm \: x =   \pm\sqrt{ \frac{7}{2} }

So, the zeroes of the given polynomial are:-

 \bullet \:  \bf \: x =  \sqrt{ \frac{7}{2} }  \: or \: x =  -  \sqrt{ \frac{7}{2} }

Let α and β are the zeroes of the given polynomial.

Let :-

  • ★ α = √7/2
  • ★ β = -√7/2

➝ p(x) = 2x² - 7

  • a = 2
  • b = 0
  • c = -7

 \large\blacktriangleright \bf \: sum \: of \: zeroes =  \frac{ - b}{a}

\longrightarrow \rm \:  \frac{ \sqrt{7} }{ \sqrt{2} }   + ( -  \frac{ \sqrt{7} }{ \sqrt{2} } ) =  \frac{0}{2}  \\  \\  \longrightarrow \rm \:  \frac{ \sqrt{7}  -  \sqrt{7} }{ \sqrt{2} }  = 0 \\  \\ \longrightarrow \rm \: 0 = 0

 \large\blacktriangleright \bf \: product \: of \: zeroes =  \frac{ c}{a}

 \longrightarrow \rm \:  \frac{ \sqrt{7} }{ \sqrt{2} }   \times  ( -  \frac{ \sqrt{7} }{ \sqrt{2} } ) =  \frac{ - 7}{2}  \\  \\ \longrightarrow \rm \: \frac{ - 7}{2}  =  \frac{ - 7}{2}

LHS = RHS

hence relationship is verified.

Similar questions