Math, asked by puvvadajaidhev, 1 month ago

find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficient
xsquare-5x​

Answers

Answered by Anonymous
35

Answer:

Correct Question :-

  • Find the zeroes of the following quadratic equation polynomial x² - 5 and verify the relationship between the zeroes and co-efficient.

Given :-

  • x² - 5

To Find :-

  • What is the zeroes of the quadratic equation.
  • Verify the relationship between the zeroes and co-efficient.

Formula Used :-

\clubsuit Sum of roots :

\longmapsto \: \sf\boxed{\bold{\pink{Sum\: of\: roots\: (\alpha + \beta) =\: \dfrac{- b}{a}}}}

\clubsuit Product of roots :

\longmapsto \sf \boxed{\bold{\pink{Product\: of\: roots\: (\alpha\beta) =\: \dfrac{c}{a}}}}

Solution :-

Given :

\dashrightarrow \sf\bold{\green{x^2 - 5}}

\implies \sf p(x) =\: x^2 - 5

\implies \sf x^2 - 5 =\: 0

\implies \sf x^2 =\: 5

\implies \sf x =\: \sqrt{5}

\implies \sf\bold{\red{x =\: \sqrt{5}}}

And,

\implies \sf\bold{\red{x =\: - \sqrt{5}}}

\therefore The zeroes of quadratic polynomial is 5 and - 5.

Hence,

  • α = √5
  • β = - √5

\rule{150}{2}

\bigstar Verify the relationship between the zeroes and co-efficient :

Given equation :

\dashrightarrow \sf x^2 - 5

where,

  • a = 1
  • b = 0
  • c = - 5

\leadsto \sf\bold{Sum\: of\: roots\: :-}

\implies \sf \sqrt{5} + (- \sqrt{5}) =\: \dfrac{- 0}{1}

\implies \sf {\cancel{\sqrt{5}}} - {\cancel{\sqrt{5}}} =\: 0

\implies \sf\bold{\red{0 =\: 0}}

\leadsto \sf\bold{Product\: of\: roots}

\implies \sf \sqrt{5} \times (- \sqrt{5}) =\: \dfrac{- 5}{1}

\implies \sf - \sqrt{25} =\: - 5

\implies \sf\bold{\red{- 5 =\: - 5}}

Hence, Verified.

Answered by AbhinavRocks10
5

✯✯ QUESTION ✯✯

Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and coefficients of x²-9..

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\longrightarrow{{x}^{2}-9}

Using Identity : -

\longrightarrow{{a}^{2}-{b}^{2}=(a+b)(a-b)}

\longrightarrow{({x}^{2}+(-9)({x}^{2}-(-9)}

\longrightarrow{({x}^{2}-9)({x}^{2}+9)}

Now ,

\longrightarrow{{x}^{2}-9=0}

\longrightarrow{{x}^{2}=\sqrt{9}}

\red\longmapsto\:\large\underline{\boxed{\bf\green{x}\orange{=}\purple{3}}}

\longrightarrow{{x}^{2}+9=0}

\longrightarrow{{x}^{2}=\sqrt[-]{9}}

\red\longmapsto\:\large\underline{\boxed{\bf\orange{x}\green{=}\blue{-3}}}

So , 3 and -3 are the zeroes of polynomials x²-9..

Now ,

➥Sum of Zeroes : -

\longrightarrow{\alpha+\beta=\dfrac{-b}{a}}

\longrightarrow{3+(-3)=\dfrac{-(-0)}{1}}⟶3+(−3)

\longrightarrow{0=0}

➥Product of Zeroes : -

\longrightarrow{\alpha\beta=\dfrac{c}{a}}

\longrightarrow{3\times{-3}=\dfrac{-9}{1}}

\longrightarrow{-9=-9}

\pink\longmapsto\:\large\underline{\boxed{\bf\purple{L.H.S}\green{=}\red{R.H.S}}}

Similar questions