Math, asked by shanka9500, 10 months ago

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeros and the coefficients. X^2-8-2x

Answers

Answered by deepthi007
0

Answer:

the zeroes are 4, -2

sum of zeroes =-b/a

product of zeros= c/a

Answered by umiko28
11

Answer:

➡➡your ans☢☢☢

Step-by-step explanation:

 \bf\ let \: p(x) =  {x}^{2} - 2x - 8 \\  \\  \bf\  zero \: of \: the \: polynomial \: is \: the \: value \: of \: x \: where \: p(x) = 0 \\  \\  \bf\ putting \:  \: p(x) = 0 \\  \\  \bf\   \implies{x}^{2} - 2x - 8 = 0 \\  \\  \bf\red{ \underline{using \: the \: splitting \: term \: method}}   \\    \\  \bf\green{\underline{where \: sum \: of \: the \: two \: numbers =  - 2}}  \\  \\  \bf\pink{ \underline{and \: product \: of \: the \: two \: numbers =  -  {8x}^{2} }}  \\  \\  \bf\orange{so \: the \: numbers = 4x \: and \: 2x} \\  \\ \bf\   \implies {x}^{2}  - (4x  - 2x) - 8 = 0 \\  \\ \bf\   \implies {x}^{2} - 4x + 2x - 8 = 0 \\  \\  \bf\   \implies \: x(x - 4) + 2(x - 4) = 0 \\  \\ \bf\   \implies \: (x - 4)(x + 2) = 0 \\  \\ \bf\red{ \underline{ \mapsto: x - 4 = 0}} \\  \\ \bf\red{ \underline{ \implies \: x = 4}} \\  \\ \bf\blue{ \underline{ :  \mapsto \: x + 2 = 0}} \\  \\ \bf\blue{ \underline{x =  - 2}} \\  \\  \bf\ therefore \:  \alpha  =  - 2 \: and \:  \beta  = 4 \: are \: the \: zeros \: of \: the \: polynomial \\  \\ \bf\ \: p(x) =  {x}^{2} - 2x - 8 \\  \\    \bf\ \implies1 {x}^{2} - 2x - 8 \\  \\  \bf\ comparing \: with \:  {ax}^{2} + bx + c \\  \\   \bf\ \: so \: a = 1 \:  \: b =  - 2 \:  \: c =  - 8 \\  \\ \bf\red{ \: sum \: of \: zeros \implies  - \frac{coefficient \: of \: x}{coefficient \: of \: {x}^{2} }}  \\  \\  \bf\  i.e =  \alpha  +  \beta  =  \frac{ - b}{a}  \\ \bf\{ \underline{  \mapsto: l.h.s =  \alpha +   \beta =  - 2 + 4 = 2 }\\  \bf\{ \underline{  \mapsto: r.h.s =   - \frac{b}{a} =  -  \frac{ - 2}{1} = 2  }\\   \\  \bf\purple{product \: of \: zeros \implies \frac{constant  \: term}{coefficient \: of \: {x}^{2}} }  \\   \\  \bf\  \mapsto:i.e =  \alpha   \times \beta  =  \frac{c}{a}   \\ \bf\  \mapsto:l.h.s =  \alpha  \beta  =(  - 2) ( 4) =  - 8 \\  \bf\  \mapsto: \frac{c}{a}  =  \frac{ - 8}{1}  =  - 8 \\  \\  \\  \bf\red{ \underline{  \mapsto:since \: l.h.s =r .h.s} }\\  \\ \bf\orange{ \underline{  \mapsto:hence \: relationship \: between \: zeros \: and \: coefficient \: is \: proved}}

\large\boxed{ \fcolorbox{pink}{lime}{hope \: it \: help \: you}}

Similar questions